|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
from transformers import AutoModelForCausalLM |
|
from trl import PreTrainedModelWrapper |
|
|
|
|
|
class ValueHead(nn.Module): |
|
def __init__(self, config, **kwargs): |
|
super().__init__() |
|
if not hasattr(config, "summary_dropout_prob"): |
|
summary_dropout_prob = kwargs.pop("summary_dropout_prob", 0.1) |
|
else: |
|
summary_dropout_prob = config.summary_dropout_prob |
|
|
|
self.dropout = nn.Dropout(summary_dropout_prob) if summary_dropout_prob else nn.Identity() |
|
|
|
|
|
if hasattr(config, "hidden_size"): |
|
hidden_size = config.hidden_size |
|
if hasattr(config, "word_embed_proj_dim"): |
|
hidden_size = config.word_embed_proj_dim |
|
elif hasattr(config, "is_encoder_decoder"): |
|
if config.is_encoder_decoder and hasattr(config, "decoder"): |
|
if hasattr(config.decoder, "hidden_size"): |
|
hidden_size = config.decoder.hidden_size |
|
|
|
|
|
if hasattr(config, "vhead_layer_type"): |
|
self.layer_type = config.vhead_layer_type |
|
else: |
|
self.layer_type = kwargs.pop("vhead_layer_type", 'mlp') |
|
if hasattr(config, 'vhead_num_neurons'): |
|
num_neurons = config.vhead_num_neurons |
|
else: |
|
num_neurons = kwargs.pop("vhead_num_neurons", 1024) |
|
if hasattr(config, 'vhead_num_layers'): |
|
num_layers = config.vhead_num_layers |
|
else: |
|
num_layers = kwargs.pop("vhead_num_layers", 1) |
|
|
|
if self.layer_type == 'linear': |
|
self.summary = nn.Linear(hidden_size, 1) |
|
else: |
|
module_lis = [] |
|
input_neurons = hidden_size |
|
for i in range(num_layers): |
|
module_lis.extend([nn.Linear(input_neurons, num_neurons), nn.ReLU()]) |
|
input_neurons = num_neurons |
|
|
|
module_lis.append(nn.Linear(num_neurons, 1)) |
|
self.summary = nn.Sequential(*module_lis) |
|
self.flatten = nn.Flatten() |
|
|
|
def forward(self, hidden_states): |
|
output = self.dropout(hidden_states) |
|
if (self.layer_type == 'linear' and output.dtype != self.summary.weight.dtype): |
|
output = output.to(self.summary.weight.dtype) |
|
elif (self.layer_type != 'linear' and output.dtype != self.summary[0].weight.dtype): |
|
output = output.to(self.summary[0].weight.dtype) |
|
|
|
output = self.summary(output) |
|
return output |
|
|
|
|
|
class AutoModelForCausalLMWithValueHead(PreTrainedModelWrapper): |
|
transformers_parent_class = AutoModelForCausalLM |
|
lm_head_namings = ["lm_head", "embed_out"] |
|
supported_args = ( |
|
"summary_dropout_prob", |
|
"v_head_initializer_range", |
|
"v_head_init_strategy", |
|
"layer_type", |
|
'num_neurons', |
|
'num_layers', |
|
) |
|
|
|
def __init__(self, pretrained_model, **kwargs): |
|
r""" |
|
Initializes the model. |
|
""" |
|
super().__init__(pretrained_model, **kwargs) |
|
v_head_kwargs, _, _ = self._split_kwargs(kwargs) |
|
|
|
if not any(hasattr(self.pretrained_model, attribute) for attribute in self.lm_head_namings): |
|
raise ValueError("The model does not have a language model head, please use a model that has one.") |
|
|
|
self.v_head = ValueHead(self.pretrained_model.config, **v_head_kwargs) |
|
self._init_weights(**v_head_kwargs) |
|
|
|
def _init_weights(self, **kwargs): |
|
r""" |
|
Initializes the weights of the value head. |
|
""" |
|
initializer_range = kwargs.pop("v_head_initializer_range", 0.2) |
|
|
|
init_strategy = kwargs.pop("v_head_init_strategy", None) |
|
if init_strategy is None: |
|
|
|
pass |
|
elif init_strategy == "normal": |
|
self.v_head.summary.weight.data.normal_(mean=0.0, std=initializer_range) |
|
self.v_head.summary.bias.data.zero_() |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
past_key_values=None, |
|
attention_mask=None, |
|
**kwargs, |
|
): |
|
kwargs["output_hidden_states"] = True |
|
kwargs["past_key_values"] = past_key_values |
|
|
|
if self.is_peft_model and self.pretrained_model.active_peft_config.peft_type == "PREFIX_TUNING": |
|
kwargs.pop("past_key_values") |
|
|
|
base_model_output = self.pretrained_model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
**kwargs, |
|
) |
|
|
|
last_hidden_state = base_model_output.hidden_states[-1] |
|
lm_logits = base_model_output.logits |
|
loss = base_model_output.loss |
|
|
|
if (hasattr(self.v_head.summary, 'weight') and last_hidden_state.device != self.v_head.summary.weight.device): |
|
last_hidden_state = last_hidden_state.to(self.v_head.summary.weight.device) |
|
elif not hasattr(self.v_head.summary, 'weight') and (last_hidden_state.device != self.v_head.summary[0].weight.device): |
|
last_hidden_state = last_hidden_state.to(self.v_head.summary[0].weight.device) |
|
|
|
|
|
if torch.any(attention_mask[:, 0] == 0): |
|
|
|
last_index = attention_mask.shape[-1] - 1 |
|
else: |
|
|
|
last_index = attention_mask.sum(dim=-1) - 1 |
|
value = self.v_head(last_hidden_state).squeeze(-1)[torch.arange(len(last_hidden_state)), last_index] |
|
|
|
|
|
if lm_logits.dtype != torch.float32: |
|
lm_logits = lm_logits.float() |
|
|
|
return (lm_logits, loss, value) |
|
|
|
def generate(self, *args, **kwargs): |
|
return self.pretrained_model.generate(*args, **kwargs) |
|
|
|
def state_dict(self, *args, **kwargs): |
|
pretrained_model_state_dict = self.pretrained_model.state_dict(*args, **kwargs) |
|
|
|
v_head_state_dict = self.v_head.state_dict(*args, **kwargs) |
|
for k, v in v_head_state_dict.items(): |
|
pretrained_model_state_dict[f"v_head.{k}"] = v |
|
return pretrained_model_state_dict |
|
|
|
def push_to_hub(self, *args, **kwargs): |
|
setattr(self.pretrained_model, "v_head", self.v_head) |
|
return self.pretrained_model.push_to_hub(*args, **kwargs) |
|
|
|
|
|
|
|
def post_init(self, state_dict): |
|
for k in list(state_dict.keys()): |
|
if "v_head." in k: |
|
state_dict[k.replace("v_head.", "")] = state_dict.pop(k) |
|
self.v_head.load_state_dict(state_dict, strict=False) |
|
del state_dict |
|
|
|
if hasattr(self.pretrained_model, "hf_device_map"): |
|
if ( |
|
"cpu" in self.pretrained_model.hf_device_map.values() |
|
or "disk" in self.pretrained_model.hf_device_map.values() |
|
): |
|
raise ValueError( |
|
"The model is offloaded on CPU or disk - CPU & disk offloading is not supported for ValueHead models." |
|
) |
|
|
|
first_device = list(set(self.pretrained_model.hf_device_map.values()))[0] |
|
|
|
self.v_head = self.v_head.to(first_device) |
|
|
|
def set_device_hook(module, input, outputs): |
|
new_output = () |
|
for output in outputs: |
|
if isinstance(output, torch.Tensor): |
|
new_output += (output.to(first_device),) |
|
else: |
|
new_output += (output,) |
|
return new_output |
|
|
|
self.register_forward_hook(set_device_hook) |
|
|
|
self.is_sequential_parallel = True |
|
|
|
@classmethod |
|
def register_for_auto_class(cls, auto_class="AutoModel"): |
|
if not isinstance(auto_class, str): |
|
auto_class = auto_class.__name__ |
|
|
|
import transformers.models.auto as auto_module |
|
|
|
if not hasattr(auto_module, auto_class): |
|
raise ValueError(f"{auto_class} is not a valid auto class.") |
|
|
|
cls._auto_class = auto_class |
|
|
|
|