File size: 7,097 Bytes
d3fc665
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
---
tags:
- moe
- fp8
- vllm
license: other
license_name: deepseek-license
base_model: deepseek-ai/DeepSeek-Coder-V2-Base
library_name: transformers
---

# DeepSeek-Coder-V2-Instruct-0724-FP8

## Model Overview
- **Model Architecture:** DeepSeek-Coder-V2-Instruct-0724
  - **Input:** Text
  - **Output:** Text
- **Model Optimizations:**
  - **Weight quantization:** FP8
  - **Activation quantization:** FP8
- **Release Date:** 3/1/2025
- **Version:** 1.0
- **Model Developers:** Neural Magic

Quantized version of [DeepSeek-Coder-V2-Instruct-0724](https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Instruct-0724).

### Model Optimizations

This model was obtained by quantizing weights and activations to FP8 data type, ready for inference with vLLM >= 0.5.2.
This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. Only the weights and activations of the linear operators within transformers blocks are quantized, except the MLP routers. 

## Deployment

### Use with vLLM

This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.

```python
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams

max_model_len, tp_size = 4096, 4
model_name = "neuralmagic-ent/DeepSeek-Coder-V2-Instruct-0724-FP8"
tokenizer = AutoTokenizer.from_pretrained(model_name)
llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True)
sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id])

messages_list = [
    [{"role": "user", "content": "Who are you? Please respond in pirate speak!"}],
]

prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list]

outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params)

generated_text = [output.outputs[0].text for output in outputs]
print(generated_text)
```

vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.

## Creation

This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below with the following command:

```bash
python quantize.py --model_path deepseek-ai/DeepSeek-Coder-V2-Instruct-0724 --quant_path "output_dir" --calib_size 128 
```


```python
import argparse
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer
from llmcompressor.modifiers.quantization import QuantizationModifier
from llmcompressor.transformers import oneshot
from llmcompressor.transformers.compression.helpers import calculate_offload_device_map
import torch
import os


def main():
    # Set up command line argument parsing
    parser = argparse.ArgumentParser(description='Quantize a transformer model to FP8')
    parser.add_argument('--model_id', type=str, required=True,
                        help='The model ID from HuggingFace (e.g., "meta-llama/Meta-Llama-3-8B-Instruct")')
    parser.add_argument('--save_path', type=str, default='.',
                        help='Custom path to save the quantized model. If not provided, will use model_name-FP8')
    parser.add_argument('--calib_size', type=int, default=256)
    args = parser.parse_args()

    device_map = calculate_offload_device_map(
        args.model_id,
        reserve_for_hessians=False,
        num_gpus=torch.cuda.device_count(),
        trust_remote_code=True,
        torch_dtype=torch.bfloat16,
    )

    model = AutoModelForCausalLM.from_pretrained(
        args.model_id, device_map=device_map, torch_dtype=torch.bfloat16, trust_remote_code=True,
    )
    tokenizer = AutoTokenizer.from_pretrained(args.model_id)

    NUM_CALIBRATION_SAMPLES = args.calib_size
    DATASET_ID = "garage-bAInd/Open-Platypus"
    DATASET_SPLIT = "train"
    ds = load_dataset(DATASET_ID, split=DATASET_SPLIT)
    ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES))

    def preprocess(example):
        concat_txt = example["instruction"] + "\n" + example["output"]
        return {"text": concat_txt}

    ds = ds.map(preprocess)

    def tokenize(sample):
        return tokenizer(
            sample["text"],
            padding=False,
            truncation=False,
            add_special_tokens=True,
        )

    ds = ds.map(tokenize, remove_columns=ds.column_names)

    # Configure the quantization algorithm and scheme
    recipe = QuantizationModifier(
        targets="Linear", scheme="FP8", ignore=["lm_head", "re:.*\.mlp\.gate$"]
    )

    # Apply quantization
    oneshot(
        model=model,
        dataset=ds,
        recipe=recipe,
        num_calibration_samples=args.calib_size
    )

    save_path = os.path.join(args.save_path, args.model_id.split("/")[1] + "-FP8")
    os.makedirs(save_path, exist_ok=True)

    # Save to disk in compressed-tensors format
    model.save_pretrained(save_path, save_compressed=True, skip_compression_stats=True)
    tokenizer.save_pretrained(save_path)
    print(f"Model and tokenizer saved to: {save_path}")

if __name__ == "__main__":
    main()
```

## Evaluation

The model was evaluated on [HumanEval and HumanEval+](https://github.com/openai/human-eval?tab=readme-ov-file) benchmark with the [Neural Magic fork](https://github.com/neuralmagic/evalplus) of the [EvalPlus implementation of HumanEval+](https://github.com/evalplus/evalplus) and the [vLLM](https://docs.vllm.ai/en/stable/) engine, using the following commands:

```
python evalplus/codegen/generate.py --model neuralmagic-ent/DeepSeek-Coder-V2-Instruct-0724-FP8 --bs 16 --temperature 0.2 --n_samples 50 --root "./results" --dataset humaneval --backend vllm --dtype auto --tp 8 

python evalplus/evalplus/sanitize.py results/humaneval/neuralmagic-ent--DeepSeek-Coder-V2-Instruct-0724-FP8_vllm_temp_0.2

evalplus.evaluate --dataset humaneval --samples results/humaneval/neuralmagic-ent--DeepSeek-Coder-V2-Instruct-0724-FP8_vllm_temp_0.2-sanitized
```


### Accuracy

#### HumanEval evaluation scores

| Metric                 | deepseek-ai/DeepSeek-Coder-V2-Instruct-0724             | neuralmagic-ent/DeepSeek-Coder-V2-Instruct-0724-FP8 |
|------------------------|:---------------------------------:|:-------------------------------------------:|
| HumanEval pass@1       | 89.3                            | 88.7                                        |
| HumanEval pass@10      | 93.1                            | 92.9                                        |
| HumanEval+ pass@1      | 82.9                            | 82.8                                       |
| HumanEval+ pass@10     | 87.6                            | 86.9                                       |
| **Average Score**                       | **88.23**                        | **87.83**                                   |
| **Recovery**                            | **100.00**                       | **99.55**                                   |