Update README.md
Browse files
README.md
CHANGED
@@ -4,6 +4,385 @@ language:
|
|
4 |
- en
|
5 |
tags:
|
6 |
- sparse sparsity quantized onnx embeddings int8
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
---
|
8 |
|
9 |
# bge-large-en-v1.5-sparse
|
|
|
4 |
- en
|
5 |
tags:
|
6 |
- sparse sparsity quantized onnx embeddings int8
|
7 |
+
- mteb
|
8 |
+
model-index:
|
9 |
+
- name: bge-large-en-v1.5-sparse
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: STS
|
13 |
+
dataset:
|
14 |
+
type: mteb/biosses-sts
|
15 |
+
name: MTEB BIOSSES
|
16 |
+
config: default
|
17 |
+
split: test
|
18 |
+
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
|
19 |
+
metrics:
|
20 |
+
- type: cos_sim_pearson
|
21 |
+
value: 87.73305831153709
|
22 |
+
- type: cos_sim_spearman
|
23 |
+
value: 85.64351771070989
|
24 |
+
- type: euclidean_pearson
|
25 |
+
value: 86.06880877736519
|
26 |
+
- type: euclidean_spearman
|
27 |
+
value: 85.60676988543395
|
28 |
+
- type: manhattan_pearson
|
29 |
+
value: 85.69108036145253
|
30 |
+
- type: manhattan_spearman
|
31 |
+
value: 85.05314281283421
|
32 |
+
- task:
|
33 |
+
type: STS
|
34 |
+
dataset:
|
35 |
+
type: mteb/sickr-sts
|
36 |
+
name: MTEB SICK-R
|
37 |
+
config: default
|
38 |
+
split: test
|
39 |
+
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
|
40 |
+
metrics:
|
41 |
+
- type: cos_sim_pearson
|
42 |
+
value: 85.61833776000717
|
43 |
+
- type: cos_sim_spearman
|
44 |
+
value: 80.73718686921521
|
45 |
+
- type: euclidean_pearson
|
46 |
+
value: 83.9368704709159
|
47 |
+
- type: euclidean_spearman
|
48 |
+
value: 80.64477415487963
|
49 |
+
- type: manhattan_pearson
|
50 |
+
value: 83.92383757341743
|
51 |
+
- type: manhattan_spearman
|
52 |
+
value: 80.59625506933862
|
53 |
+
- task:
|
54 |
+
type: STS
|
55 |
+
dataset:
|
56 |
+
type: mteb/sts12-sts
|
57 |
+
name: MTEB STS12
|
58 |
+
config: default
|
59 |
+
split: test
|
60 |
+
revision: a0d554a64d88156834ff5ae9920b964011b16384
|
61 |
+
metrics:
|
62 |
+
- type: cos_sim_pearson
|
63 |
+
value: 83.81272888013494
|
64 |
+
- type: cos_sim_spearman
|
65 |
+
value: 76.07038564455931
|
66 |
+
- type: euclidean_pearson
|
67 |
+
value: 80.33676600912023
|
68 |
+
- type: euclidean_spearman
|
69 |
+
value: 75.86575335744111
|
70 |
+
- type: manhattan_pearson
|
71 |
+
value: 80.36973770593211
|
72 |
+
- type: manhattan_spearman
|
73 |
+
value: 75.88787860200954
|
74 |
+
- task:
|
75 |
+
type: STS
|
76 |
+
dataset:
|
77 |
+
type: mteb/sts13-sts
|
78 |
+
name: MTEB STS13
|
79 |
+
config: default
|
80 |
+
split: test
|
81 |
+
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
|
82 |
+
metrics:
|
83 |
+
- type: cos_sim_pearson
|
84 |
+
value: 85.58781524090651
|
85 |
+
- type: cos_sim_spearman
|
86 |
+
value: 86.80508359626748
|
87 |
+
- type: euclidean_pearson
|
88 |
+
value: 85.22891409219575
|
89 |
+
- type: euclidean_spearman
|
90 |
+
value: 85.78295876926319
|
91 |
+
- type: manhattan_pearson
|
92 |
+
value: 85.2193177032458
|
93 |
+
- type: manhattan_spearman
|
94 |
+
value: 85.74049940198427
|
95 |
+
- task:
|
96 |
+
type: STS
|
97 |
+
dataset:
|
98 |
+
type: mteb/sts14-sts
|
99 |
+
name: MTEB STS14
|
100 |
+
config: default
|
101 |
+
split: test
|
102 |
+
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
|
103 |
+
metrics:
|
104 |
+
- type: cos_sim_pearson
|
105 |
+
value: 84.0862821699066
|
106 |
+
- type: cos_sim_spearman
|
107 |
+
value: 81.67856196476185
|
108 |
+
- type: euclidean_pearson
|
109 |
+
value: 83.38475353138897
|
110 |
+
- type: euclidean_spearman
|
111 |
+
value: 81.45279784228292
|
112 |
+
- type: manhattan_pearson
|
113 |
+
value: 83.29235221714131
|
114 |
+
- type: manhattan_spearman
|
115 |
+
value: 81.3971683104493
|
116 |
+
- task:
|
117 |
+
type: STS
|
118 |
+
dataset:
|
119 |
+
type: mteb/sts15-sts
|
120 |
+
name: MTEB STS15
|
121 |
+
config: default
|
122 |
+
split: test
|
123 |
+
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
|
124 |
+
metrics:
|
125 |
+
- type: cos_sim_pearson
|
126 |
+
value: 87.44459051393112
|
127 |
+
- type: cos_sim_spearman
|
128 |
+
value: 88.74673154561383
|
129 |
+
- type: euclidean_pearson
|
130 |
+
value: 88.13112382236628
|
131 |
+
- type: euclidean_spearman
|
132 |
+
value: 88.56241954487271
|
133 |
+
- type: manhattan_pearson
|
134 |
+
value: 88.11098632041256
|
135 |
+
- type: manhattan_spearman
|
136 |
+
value: 88.55607051247829
|
137 |
+
- task:
|
138 |
+
type: STS
|
139 |
+
dataset:
|
140 |
+
type: mteb/sts16-sts
|
141 |
+
name: MTEB STS16
|
142 |
+
config: default
|
143 |
+
split: test
|
144 |
+
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
|
145 |
+
metrics:
|
146 |
+
- type: cos_sim_pearson
|
147 |
+
value: 82.8825746257794
|
148 |
+
- type: cos_sim_spearman
|
149 |
+
value: 84.6066555379785
|
150 |
+
- type: euclidean_pearson
|
151 |
+
value: 84.12438131112606
|
152 |
+
- type: euclidean_spearman
|
153 |
+
value: 84.75862802179907
|
154 |
+
- type: manhattan_pearson
|
155 |
+
value: 84.12791217960807
|
156 |
+
- type: manhattan_spearman
|
157 |
+
value: 84.7739597139034
|
158 |
+
- task:
|
159 |
+
type: STS
|
160 |
+
dataset:
|
161 |
+
type: mteb/sts17-crosslingual-sts
|
162 |
+
name: MTEB STS17 (en-en)
|
163 |
+
config: en-en
|
164 |
+
split: test
|
165 |
+
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
166 |
+
metrics:
|
167 |
+
- type: cos_sim_pearson
|
168 |
+
value: 89.19971502207773
|
169 |
+
- type: cos_sim_spearman
|
170 |
+
value: 89.75109780507901
|
171 |
+
- type: euclidean_pearson
|
172 |
+
value: 89.5913898113725
|
173 |
+
- type: euclidean_spearman
|
174 |
+
value: 89.20244860773123
|
175 |
+
- type: manhattan_pearson
|
176 |
+
value: 89.68755363801112
|
177 |
+
- type: manhattan_spearman
|
178 |
+
value: 89.3105024782381
|
179 |
+
- task:
|
180 |
+
type: STS
|
181 |
+
dataset:
|
182 |
+
type: mteb/sts22-crosslingual-sts
|
183 |
+
name: MTEB STS22 (en)
|
184 |
+
config: en
|
185 |
+
split: test
|
186 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
187 |
+
metrics:
|
188 |
+
- type: cos_sim_pearson
|
189 |
+
value: 61.73885819503523
|
190 |
+
- type: cos_sim_spearman
|
191 |
+
value: 64.09521607825829
|
192 |
+
- type: euclidean_pearson
|
193 |
+
value: 64.22116001518724
|
194 |
+
- type: euclidean_spearman
|
195 |
+
value: 63.84189650719827
|
196 |
+
- type: manhattan_pearson
|
197 |
+
value: 64.23930191730729
|
198 |
+
- type: manhattan_spearman
|
199 |
+
value: 63.7536172795383
|
200 |
+
- task:
|
201 |
+
type: STS
|
202 |
+
dataset:
|
203 |
+
type: mteb/stsbenchmark-sts
|
204 |
+
name: MTEB STSBenchmark
|
205 |
+
config: default
|
206 |
+
split: test
|
207 |
+
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
|
208 |
+
metrics:
|
209 |
+
- type: cos_sim_pearson
|
210 |
+
value: 85.68505574064375
|
211 |
+
- type: cos_sim_spearman
|
212 |
+
value: 86.87614324154406
|
213 |
+
- type: euclidean_pearson
|
214 |
+
value: 86.96751967489614
|
215 |
+
- type: euclidean_spearman
|
216 |
+
value: 86.78979082790067
|
217 |
+
- type: manhattan_pearson
|
218 |
+
value: 86.92578795715433
|
219 |
+
- type: manhattan_spearman
|
220 |
+
value: 86.74076104131726
|
221 |
+
- task:
|
222 |
+
type: PairClassification
|
223 |
+
dataset:
|
224 |
+
type: mteb/sprintduplicatequestions-pairclassification
|
225 |
+
name: MTEB SprintDuplicateQuestions
|
226 |
+
config: default
|
227 |
+
split: test
|
228 |
+
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
|
229 |
+
metrics:
|
230 |
+
- type: cos_sim_accuracy
|
231 |
+
value: 99.80990099009901
|
232 |
+
- type: cos_sim_ap
|
233 |
+
value: 95.00187845875503
|
234 |
+
- type: cos_sim_f1
|
235 |
+
value: 90.37698412698413
|
236 |
+
- type: cos_sim_precision
|
237 |
+
value: 89.66535433070865
|
238 |
+
- type: cos_sim_recall
|
239 |
+
value: 91.10000000000001
|
240 |
+
- type: dot_accuracy
|
241 |
+
value: 99.63366336633663
|
242 |
+
- type: dot_ap
|
243 |
+
value: 87.6642728041652
|
244 |
+
- type: dot_f1
|
245 |
+
value: 81.40803173029252
|
246 |
+
- type: dot_precision
|
247 |
+
value: 80.7276302851524
|
248 |
+
- type: dot_recall
|
249 |
+
value: 82.1
|
250 |
+
- type: euclidean_accuracy
|
251 |
+
value: 99.8079207920792
|
252 |
+
- type: euclidean_ap
|
253 |
+
value: 94.88531851782375
|
254 |
+
- type: euclidean_f1
|
255 |
+
value: 90.49019607843137
|
256 |
+
- type: euclidean_precision
|
257 |
+
value: 88.75
|
258 |
+
- type: euclidean_recall
|
259 |
+
value: 92.30000000000001
|
260 |
+
- type: manhattan_accuracy
|
261 |
+
value: 99.81188118811882
|
262 |
+
- type: manhattan_ap
|
263 |
+
value: 94.87944331919043
|
264 |
+
- type: manhattan_f1
|
265 |
+
value: 90.5
|
266 |
+
- type: manhattan_precision
|
267 |
+
value: 90.5
|
268 |
+
- type: manhattan_recall
|
269 |
+
value: 90.5
|
270 |
+
- type: max_accuracy
|
271 |
+
value: 99.81188118811882
|
272 |
+
- type: max_ap
|
273 |
+
value: 95.00187845875503
|
274 |
+
- type: max_f1
|
275 |
+
value: 90.5
|
276 |
+
- task:
|
277 |
+
type: PairClassification
|
278 |
+
dataset:
|
279 |
+
type: mteb/twittersemeval2015-pairclassification
|
280 |
+
name: MTEB TwitterSemEval2015
|
281 |
+
config: default
|
282 |
+
split: test
|
283 |
+
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
|
284 |
+
metrics:
|
285 |
+
- type: cos_sim_accuracy
|
286 |
+
value: 86.3861238600465
|
287 |
+
- type: cos_sim_ap
|
288 |
+
value: 74.50058066578084
|
289 |
+
- type: cos_sim_f1
|
290 |
+
value: 69.25949774629748
|
291 |
+
- type: cos_sim_precision
|
292 |
+
value: 67.64779874213836
|
293 |
+
- type: cos_sim_recall
|
294 |
+
value: 70.94986807387863
|
295 |
+
- type: dot_accuracy
|
296 |
+
value: 81.57000655659535
|
297 |
+
- type: dot_ap
|
298 |
+
value: 59.10193583653485
|
299 |
+
- type: dot_f1
|
300 |
+
value: 58.39352155832786
|
301 |
+
- type: dot_precision
|
302 |
+
value: 49.88780852655198
|
303 |
+
- type: dot_recall
|
304 |
+
value: 70.3957783641161
|
305 |
+
- type: euclidean_accuracy
|
306 |
+
value: 86.37420277761221
|
307 |
+
- type: euclidean_ap
|
308 |
+
value: 74.41671247141966
|
309 |
+
- type: euclidean_f1
|
310 |
+
value: 69.43907156673114
|
311 |
+
- type: euclidean_precision
|
312 |
+
value: 64.07853636769299
|
313 |
+
- type: euclidean_recall
|
314 |
+
value: 75.77836411609499
|
315 |
+
- type: manhattan_accuracy
|
316 |
+
value: 86.30267628300649
|
317 |
+
- type: manhattan_ap
|
318 |
+
value: 74.34438603336339
|
319 |
+
- type: manhattan_f1
|
320 |
+
value: 69.41888619854721
|
321 |
+
- type: manhattan_precision
|
322 |
+
value: 64.13870246085011
|
323 |
+
- type: manhattan_recall
|
324 |
+
value: 75.64643799472296
|
325 |
+
- type: max_accuracy
|
326 |
+
value: 86.3861238600465
|
327 |
+
- type: max_ap
|
328 |
+
value: 74.50058066578084
|
329 |
+
- type: max_f1
|
330 |
+
value: 69.43907156673114
|
331 |
+
- task:
|
332 |
+
type: PairClassification
|
333 |
+
dataset:
|
334 |
+
type: mteb/twitterurlcorpus-pairclassification
|
335 |
+
name: MTEB TwitterURLCorpus
|
336 |
+
config: default
|
337 |
+
split: test
|
338 |
+
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
|
339 |
+
metrics:
|
340 |
+
- type: cos_sim_accuracy
|
341 |
+
value: 88.87530562347187
|
342 |
+
- type: cos_sim_ap
|
343 |
+
value: 85.69496469410068
|
344 |
+
- type: cos_sim_f1
|
345 |
+
value: 77.96973052787007
|
346 |
+
- type: cos_sim_precision
|
347 |
+
value: 74.8900865125514
|
348 |
+
- type: cos_sim_recall
|
349 |
+
value: 81.3135201724669
|
350 |
+
- type: dot_accuracy
|
351 |
+
value: 86.70780455621532
|
352 |
+
- type: dot_ap
|
353 |
+
value: 80.03489678512908
|
354 |
+
- type: dot_f1
|
355 |
+
value: 73.26376129933124
|
356 |
+
- type: dot_precision
|
357 |
+
value: 70.07591733445804
|
358 |
+
- type: dot_recall
|
359 |
+
value: 76.75546658453958
|
360 |
+
- type: euclidean_accuracy
|
361 |
+
value: 88.85978189156674
|
362 |
+
- type: euclidean_ap
|
363 |
+
value: 85.67894953317325
|
364 |
+
- type: euclidean_f1
|
365 |
+
value: 78.04295942720763
|
366 |
+
- type: euclidean_precision
|
367 |
+
value: 75.67254845241538
|
368 |
+
- type: euclidean_recall
|
369 |
+
value: 80.56667693255312
|
370 |
+
- type: manhattan_accuracy
|
371 |
+
value: 88.88306748942446
|
372 |
+
- type: manhattan_ap
|
373 |
+
value: 85.66556510677526
|
374 |
+
- type: manhattan_f1
|
375 |
+
value: 78.06278290950576
|
376 |
+
- type: manhattan_precision
|
377 |
+
value: 74.76912231230173
|
378 |
+
- type: manhattan_recall
|
379 |
+
value: 81.65999384046813
|
380 |
+
- type: max_accuracy
|
381 |
+
value: 88.88306748942446
|
382 |
+
- type: max_ap
|
383 |
+
value: 85.69496469410068
|
384 |
+
- type: max_f1
|
385 |
+
value: 78.06278290950576
|
386 |
---
|
387 |
|
388 |
# bge-large-en-v1.5-sparse
|