File size: 1,782 Bytes
6a201e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
---
license: other
license_name: faipl-1.0-sd
license_link: https://freedevproject.org/faipl-1.0-sd/
pipeline_tag: text-to-image
base_model:
- Laxhar/noobai-XL-Vpred-1.0
tags:
- stable-diffusion
- stable-diffusion-xl
---

# Abydos_Noob_v-pred-1.0.0


![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/630e2d981ef92d4e37a1694e/Ahf0a5jmV6pXbfbs4qB-g.jpeg)

Modified NoobAI-XL(v-prediction) with Blue Archive style

[Civitai model page](https://civitai.com/models/923120)

## Prompt Guidelines
Almost same as the base model

## Recommended Prompt
None(Works good without `masterpiece, best quality`)

## Recommended Negative Prompt
`worst quality, bad quality, lowres, photoshop \(medium\), abstract`

To improve the quality of background, add `simple background, transparent background` to Negative Prompt.

## Recommended Settings
Steps: 12-24

Sampler: DPM++ 2M(dpmpp_2m)

Scheduler: Simple or SGM Uniform

Guidance Scale: 2-5

### Hires.fix
Upscaler: 4x-UltraSharp or Latent(nearest-exact)

Denoising strength: 0.5(0.6-0.7 for latent)

## Training steps
1. Make 2 models from NoobAI(=A,B), A with ZTSNR, B w/o ZTSNR
2. Merge A and B MBW(0,0,0,0,0,0.5,0.5,0,0.7,0.7,0.7,0.7,0.7,0.7,0.5,0.5,0,0,0,0) Adjust(0,0,0,0,-0.05,0,0,0)=tmp1
3. tmp1 + spo_sdxl_10ep_4k-data_lora_webui x 1 + sdxl-boldline x -0.25 = Result

## Training scripts:
[sd-scripts](https://github.com/kohya-ss/sd-scripts)

## Notice
This model is licensed under [Fair AI Public License 1.0-SD](https://freedevproject.org/faipl-1.0-sd/)

If you make modify this model, you must share both your changes and the original license.

You are prohibited from monetizing any close-sourced fine-tuned / merged model, which disallows the public from accessing the model's source code / weights and its usages.