create per-model inference scripts
Browse files- JTP_PILOT/inference_gradio.py +194 -0
JTP_PILOT/inference_gradio.py
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
from PIL import Image
|
5 |
+
import safetensors.torch
|
6 |
+
import timm
|
7 |
+
from timm.models import VisionTransformer
|
8 |
+
import torch
|
9 |
+
from torchvision.transforms import transforms
|
10 |
+
from torchvision.transforms import InterpolationMode
|
11 |
+
import torchvision.transforms.functional as TF
|
12 |
+
|
13 |
+
torch.set_grad_enabled(False)
|
14 |
+
|
15 |
+
class Fit(torch.nn.Module):
|
16 |
+
def __init__(
|
17 |
+
self,
|
18 |
+
bounds: tuple[int, int] | int,
|
19 |
+
interpolation = InterpolationMode.LANCZOS,
|
20 |
+
grow: bool = True,
|
21 |
+
pad: float | None = None
|
22 |
+
):
|
23 |
+
super().__init__()
|
24 |
+
|
25 |
+
self.bounds = (bounds, bounds) if isinstance(bounds, int) else bounds
|
26 |
+
self.interpolation = interpolation
|
27 |
+
self.grow = grow
|
28 |
+
self.pad = pad
|
29 |
+
|
30 |
+
def forward(self, img: Image) -> Image:
|
31 |
+
wimg, himg = img.size
|
32 |
+
hbound, wbound = self.bounds
|
33 |
+
|
34 |
+
hscale = hbound / himg
|
35 |
+
wscale = wbound / wimg
|
36 |
+
|
37 |
+
if not self.grow:
|
38 |
+
hscale = min(hscale, 1.0)
|
39 |
+
wscale = min(wscale, 1.0)
|
40 |
+
|
41 |
+
scale = min(hscale, wscale)
|
42 |
+
if scale == 1.0:
|
43 |
+
return img
|
44 |
+
|
45 |
+
hnew = min(round(himg * scale), hbound)
|
46 |
+
wnew = min(round(wimg * scale), wbound)
|
47 |
+
|
48 |
+
img = TF.resize(img, (hnew, wnew), self.interpolation)
|
49 |
+
|
50 |
+
if self.pad is None:
|
51 |
+
return img
|
52 |
+
|
53 |
+
hpad = hbound - hnew
|
54 |
+
wpad = wbound - wnew
|
55 |
+
|
56 |
+
tpad = hpad // 2
|
57 |
+
bpad = hpad - tpad
|
58 |
+
|
59 |
+
lpad = wpad // 2
|
60 |
+
rpad = wpad - lpad
|
61 |
+
|
62 |
+
return TF.pad(img, (lpad, tpad, rpad, bpad), self.pad)
|
63 |
+
|
64 |
+
def __repr__(self) -> str:
|
65 |
+
return (
|
66 |
+
f"{self.__class__.__name__}(" +
|
67 |
+
f"bounds={self.bounds}, " +
|
68 |
+
f"interpolation={self.interpolation.value}, " +
|
69 |
+
f"grow={self.grow}, " +
|
70 |
+
f"pad={self.pad})"
|
71 |
+
)
|
72 |
+
|
73 |
+
class CompositeAlpha(torch.nn.Module):
|
74 |
+
def __init__(
|
75 |
+
self,
|
76 |
+
background: tuple[float, float, float] | float,
|
77 |
+
):
|
78 |
+
super().__init__()
|
79 |
+
|
80 |
+
self.background = (background, background, background) if isinstance(background, float) else background
|
81 |
+
self.background = torch.tensor(self.background).unsqueeze(1).unsqueeze(2)
|
82 |
+
|
83 |
+
def forward(self, img: torch.Tensor) -> torch.Tensor:
|
84 |
+
if img.shape[-3] == 3:
|
85 |
+
return img
|
86 |
+
|
87 |
+
alpha = img[..., 3, None, :, :]
|
88 |
+
|
89 |
+
img[..., :3, :, :] *= alpha
|
90 |
+
|
91 |
+
background = self.background.expand(-1, img.shape[-2], img.shape[-1])
|
92 |
+
if background.ndim == 1:
|
93 |
+
background = background[:, None, None]
|
94 |
+
elif background.ndim == 2:
|
95 |
+
background = background[None, :, :]
|
96 |
+
|
97 |
+
img[..., :3, :, :] += (1.0 - alpha) * background
|
98 |
+
return img[..., :3, :, :]
|
99 |
+
|
100 |
+
def __repr__(self) -> str:
|
101 |
+
return (
|
102 |
+
f"{self.__class__.__name__}(" +
|
103 |
+
f"background={self.background})"
|
104 |
+
)
|
105 |
+
|
106 |
+
transform = transforms.Compose([
|
107 |
+
Fit((384, 384)),
|
108 |
+
transforms.ToTensor(),
|
109 |
+
CompositeAlpha(0.5),
|
110 |
+
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
|
111 |
+
transforms.CenterCrop((384, 384)),
|
112 |
+
])
|
113 |
+
|
114 |
+
model = timm.create_model(
|
115 |
+
"vit_so400m_patch14_siglip_384.webli",
|
116 |
+
pretrained=False,
|
117 |
+
num_classes=9083,
|
118 |
+
) # type: VisionTransformer
|
119 |
+
|
120 |
+
safetensors.torch.load_model(model, "JTP_PILOT-e4-vit_so400m_patch14_siglip_384.safetensors")
|
121 |
+
|
122 |
+
if torch.cuda.is_available():
|
123 |
+
model.cuda()
|
124 |
+
if torch.cuda.get_device_capability()[0] >= 7: # tensor cores
|
125 |
+
model.to(dtype=torch.float16, memory_format=torch.channels_last)
|
126 |
+
|
127 |
+
model.eval()
|
128 |
+
|
129 |
+
with open("tagger_tags.json", "r") as file:
|
130 |
+
tags = json.load(file) # type: dict
|
131 |
+
allowed_tags = list(tags.keys())
|
132 |
+
|
133 |
+
for idx, tag in enumerate(allowed_tags):
|
134 |
+
allowed_tags[idx] = tag.replace("_", " ")
|
135 |
+
|
136 |
+
sorted_tag_score = {}
|
137 |
+
|
138 |
+
def run_classifier(image, threshold):
|
139 |
+
global sorted_tag_score
|
140 |
+
img = image.convert('RGB')
|
141 |
+
tensor = transform(img).unsqueeze(0)
|
142 |
+
|
143 |
+
if torch.cuda.is_available():
|
144 |
+
tensor = tensor.cuda()
|
145 |
+
if torch.cuda.get_device_capability()[0] >= 7: # tensor cores
|
146 |
+
tensor = tensor.to(dtype=torch.float16, memory_format=torch.channels_last)
|
147 |
+
|
148 |
+
with torch.no_grad():
|
149 |
+
logits = model(tensor)
|
150 |
+
probits = torch.nn.functional.sigmoid(logits[0]).cpu()
|
151 |
+
values, indices = probits.topk(250)
|
152 |
+
|
153 |
+
tag_score = dict()
|
154 |
+
for i in range(indices.size(0)):
|
155 |
+
tag_score[allowed_tags[indices[i]]] = values[i].item()
|
156 |
+
sorted_tag_score = dict(sorted(tag_score.items(), key=lambda item: item[1], reverse=True))
|
157 |
+
|
158 |
+
return create_tags(threshold)
|
159 |
+
|
160 |
+
def create_tags(threshold):
|
161 |
+
global sorted_tag_score
|
162 |
+
filtered_tag_score = {key: value for key, value in sorted_tag_score.items() if value > threshold}
|
163 |
+
text_no_impl = ", ".join(filtered_tag_score.keys())
|
164 |
+
return text_no_impl, filtered_tag_score
|
165 |
+
|
166 |
+
|
167 |
+
with gr.Blocks(css=".output-class { display: none; }") as demo:
|
168 |
+
gr.Markdown("""
|
169 |
+
## Joint Tagger Project: PILOT Demo
|
170 |
+
This tagger is designed for use on furry images (though may very well work on out-of-distribution images, potentially with funny results). A threshold of 0.2 is recommended. Lower thresholds often turn up more valid tags, but can also result in some amount of hallucinated tags.
|
171 |
+
This tagger is the result of joint efforts between members of the RedRocket team. Special thanks to Minotoro at frosting.ai for providing the compute power for this project.
|
172 |
+
""")
|
173 |
+
with gr.Row():
|
174 |
+
with gr.Column():
|
175 |
+
image_input = gr.Image(label="Source", sources=['upload'], type='pil', height=512, show_label=False)
|
176 |
+
threshold_slider = gr.Slider(minimum=0.00, maximum=1.00, step=0.01, value=0.20, label="Threshold")
|
177 |
+
with gr.Column():
|
178 |
+
tag_string = gr.Textbox(label="Tag String")
|
179 |
+
label_box = gr.Label(label="Tag Predictions", num_top_classes=250, show_label=False)
|
180 |
+
|
181 |
+
image_input.upload(
|
182 |
+
fn=run_classifier,
|
183 |
+
inputs=[image_input, threshold_slider],
|
184 |
+
outputs=[tag_string, label_box]
|
185 |
+
)
|
186 |
+
|
187 |
+
threshold_slider.input(
|
188 |
+
fn=create_tags,
|
189 |
+
inputs=[threshold_slider],
|
190 |
+
outputs=[tag_string, label_box]
|
191 |
+
)
|
192 |
+
|
193 |
+
if __name__ == "__main__":
|
194 |
+
demo.launch()
|