update inference script for comma separated tags and using cuda if available
Browse files- inference_gradio.py +18 -8
inference_gradio.py
CHANGED
@@ -1,18 +1,15 @@
|
|
1 |
import json
|
2 |
|
3 |
-
from PIL import Image
|
4 |
import gradio as gr
|
|
|
|
|
|
|
|
|
5 |
import torch
|
6 |
from torchvision.transforms import transforms
|
7 |
from torchvision.transforms import InterpolationMode
|
8 |
import torchvision.transforms.functional as TF
|
9 |
|
10 |
-
import timm
|
11 |
-
from timm.models import VisionTransformer
|
12 |
-
import safetensors.torch
|
13 |
-
|
14 |
-
|
15 |
-
torch.jit.script = lambda f: f
|
16 |
torch.set_grad_enabled(False)
|
17 |
|
18 |
class Fit(torch.nn.Module):
|
@@ -123,13 +120,26 @@ model = timm.create_model(
|
|
123 |
safetensors.torch.load_model(model, "JTP_PILOT/JTP_PILOT-e4-vit_so400m_patch14_siglip_384.safetensors")
|
124 |
model.eval()
|
125 |
|
|
|
|
|
|
|
|
|
|
|
126 |
with open("JTP_PILOT/tags.json", "r") as file:
|
127 |
tags = json.load(file) # type: dict
|
128 |
allowed_tags = list(tags.keys())
|
129 |
|
|
|
|
|
|
|
130 |
def create_tags(image, threshold):
|
131 |
img = image.convert('RGB')
|
132 |
-
tensor = transform(img).unsqueeze(0)
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
with torch.no_grad():
|
135 |
logits = model(tensor)
|
|
|
1 |
import json
|
2 |
|
|
|
3 |
import gradio as gr
|
4 |
+
from PIL import Image
|
5 |
+
import safetensors.torch
|
6 |
+
import timm
|
7 |
+
from timm.models import VisionTransformer
|
8 |
import torch
|
9 |
from torchvision.transforms import transforms
|
10 |
from torchvision.transforms import InterpolationMode
|
11 |
import torchvision.transforms.functional as TF
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
torch.set_grad_enabled(False)
|
14 |
|
15 |
class Fit(torch.nn.Module):
|
|
|
120 |
safetensors.torch.load_model(model, "JTP_PILOT/JTP_PILOT-e4-vit_so400m_patch14_siglip_384.safetensors")
|
121 |
model.eval()
|
122 |
|
123 |
+
if torch.cuda.is_available():
|
124 |
+
model.cuda()
|
125 |
+
if torch.cuda.get_device_capability()[0] >= 7: # tensor cores
|
126 |
+
model.half()
|
127 |
+
|
128 |
with open("JTP_PILOT/tags.json", "r") as file:
|
129 |
tags = json.load(file) # type: dict
|
130 |
allowed_tags = list(tags.keys())
|
131 |
|
132 |
+
for idx, tag in enumerate(allowed_tags):
|
133 |
+
allowed_tags[idx] = tag.replace("_", " ")
|
134 |
+
|
135 |
def create_tags(image, threshold):
|
136 |
img = image.convert('RGB')
|
137 |
+
tensor = transform(img).unsqueeze(0) # type: torch.Tensor
|
138 |
+
|
139 |
+
if torch.cuda.is_available():
|
140 |
+
tensor.cuda()
|
141 |
+
if torch.cuda.get_device_capability()[0] >= 7:
|
142 |
+
tensor.half()
|
143 |
|
144 |
with torch.no_grad():
|
145 |
logits = model(tensor)
|