File size: 5,884 Bytes
59b7eeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import os
import librosa
import torch
import torch.nn.functional as F
import numpy as np
import soundfile as sf
from glob import glob
from tqdm import tqdm
from os.path import basename, join, exists
from vq.codec_encoder import CodecEncoder
# from vq.codec_decoder import CodecDecoder
from vq.codec_decoder_vocos import CodecDecoderVocos
from argparse import ArgumentParser
from time import time
from transformers import  AutoModel
import torch.nn as nn
from vq.module import SemanticDecoder,SemanticEncoder
from transformers import AutoFeatureExtractor, Wav2Vec2BertModel
if __name__ == '__main__':
    parser = ArgumentParser()
    parser.add_argument('--input-dir', type=str, default='test_audio/input_test')
    parser.add_argument('--ckpt', type=str, default='ckpt/epoch=4-step=1400000.ckpt')
    parser.add_argument('--output-dir',   type=str, default='test_audio/output_test')
             
    args = parser.parse_args()
    sr = 16000

    print(f'Load codec ckpt from {args.ckpt}')
    ckpt = torch.load(args.ckpt, map_location='cpu')
    ckpt=ckpt['state_dict']

    state_dict = ckpt
    from collections import OrderedDict
    # 步骤 2:提取并过滤 'codec_enc' 和 'generator' 部分
    filtered_state_dict_codec = OrderedDict()
    filtered_state_dict_semantic_encoder = OrderedDict()
    filtered_state_dict_gen = OrderedDict()
    filtered_state_dict_fc_post_a = OrderedDict()
    filtered_state_dict_fc_prior = OrderedDict()
    for key, value in state_dict.items():
        if key.startswith('CodecEnc.'):
            # 去掉 'codec_enc.' 前缀,以匹配 CodecEncoder 的参数名
            new_key = key[len('CodecEnc.'):]
            filtered_state_dict_codec[new_key] = value
        elif key.startswith('generator.'):
            # 去掉 'generator.' 前缀,以匹配 CodecDecoder 的参数名
            new_key = key[len('generator.'):]
            filtered_state_dict_gen[new_key] = value
        elif key.startswith('fc_post_a.'):
            # 去掉 'generator.' 前缀,以匹配 CodecDecoder 的参数名
            new_key = key[len('fc_post_a.'):]
            filtered_state_dict_fc_post_a[new_key] = value
        elif key.startswith('SemanticEncoder_module.'):
            # 去掉 'generator.' 前缀,以匹配 CodecDecoder 的参数名
            new_key = key[len('SemanticEncoder_module.'):]
            filtered_state_dict_semantic_encoder[new_key] = value
        elif key.startswith('fc_prior.'):
            # 去掉 'generator.' 前缀,以匹配 CodecDecoder 的参数名
            new_key = key[len('fc_prior.'):]
            filtered_state_dict_fc_prior[new_key] = value
    semantic_model = Wav2Vec2BertModel.from_pretrained("facebook/w2v-bert-2.0", output_hidden_states=True)

    semantic_model.eval().cuda()
    SemanticEncoder_module = SemanticEncoder(1024,1024,1024)
    SemanticEncoder_module.load_state_dict(filtered_state_dict_semantic_encoder)
    SemanticEncoder_module = SemanticEncoder_module.eval().cuda()
    encoder = CodecEncoder()
    encoder.load_state_dict(filtered_state_dict_codec)
    encoder = encoder.eval().cuda()
    decoder = CodecDecoderVocos()
    decoder.load_state_dict(filtered_state_dict_gen)
    decoder = decoder.eval().cuda()
    fc_post_a = nn.Linear( 2048, 1024 )
    fc_post_a.load_state_dict(filtered_state_dict_fc_post_a)
    fc_post_a = fc_post_a.eval().cuda()
    fc_prior = nn.Linear( 2048, 2048 )
    fc_prior.load_state_dict(filtered_state_dict_fc_prior)
    fc_prior = fc_prior.eval().cuda()
    feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/w2v-bert-2.0")

    wav_dir = args.output_dir
    os.makedirs(wav_dir, exist_ok=True)

    
    
    # wav_paths = glob(join(args.input_dir, '*.flac')) #
    # both wav and flac and mp3
    wav_paths = glob(os.path.join(args.input_dir, '**', '*.wav'), recursive=True)
    flac_paths = glob(os.path.join(args.input_dir, '**', '*.flac'), recursive=True)
    mp3_paths = glob(os.path.join(args.input_dir, '**', '*.mp3'), recursive=True)

    # 合并所有路径
    wav_paths = wav_paths + flac_paths + mp3_paths
    print(f'Found {len(wav_paths)} wavs in {args.input_dir}')
    
    st = time()
    for wav_path in tqdm(wav_paths):
        target_wav_path = join(wav_dir, basename(wav_path))
        wav = librosa.load(wav_path, sr=sr)[0] 
        wav_cpu = torch.from_numpy(wav)

 
        wav = wav_cpu.unsqueeze(0).cuda()
        pad_for_wav = (320 - (wav.shape[1] % 320))
 
        wav = torch.nn.functional.pad(wav, (0, pad_for_wav))

        feat =  feature_extractor(F.pad(wav[0,:].cpu(), (160, 160)), sampling_rate=16000, return_tensors="pt") .data['input_features']
        
        feat = feat.cuda()

        with torch.no_grad():
            vq_emb = encoder(wav.unsqueeze(1))
            vq_emb = vq_emb.transpose(1, 2)

 
            semantic_target = semantic_model(feat[:,  :,:])

            semantic_target = semantic_target.hidden_states[16]

            semantic_target = semantic_target.transpose(1, 2)
            semantic_target = SemanticEncoder_module(semantic_target)
             

            vq_emb = torch.cat([semantic_target, vq_emb], dim=1)
            vq_emb =  fc_prior(vq_emb.transpose(1, 2)).transpose(1, 2)

            _, vq_code, _ = decoder(vq_emb, vq=True)  # vq_code here !!!!

            vq_post_emb = decoder.quantizer.get_output_from_indices(vq_code.transpose(1, 2))
            vq_post_emb = vq_post_emb.transpose(1, 2)
            vq_post_emb = fc_post_a(vq_post_emb.transpose(1,2)).transpose(1,2)
            recon = decoder(vq_post_emb.transpose(1, 2), vq=False)[0].squeeze().detach().cpu().numpy()
            # recon = decoder(decoder.vq2emb(vq_code.transpose(1,2)).transpose(1,2), vq=False).squeeze().detach().cpu().numpy()
        sf.write(target_wav_path, recon, sr)
    et = time()
    print(f'Inference ends, time: {(et-st)/60:.2f} mins')