File size: 21,087 Bytes
59b7eeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
import os
 
import random
import hydra
import numpy as np
import librosa
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import pytorch_lightning as pl
from vq import CodecEncoder,  CodecDecoderVocos 
from module import HiFiGANMultiPeriodDiscriminator, SpecDiscriminator
from criterions import GANLoss, MultiResolutionMelSpectrogramLoss, MultiResolutionSTFTLoss
from common.schedulers import WarmupLR
from transformers import AutoModel
from vq.module import SemanticDecoder,SemanticEncoder
from transformers import AutoFeatureExtractor, Wav2Vec2BertModel
import sys
# sys.path.append('/home/ubuntu/X-Codec-2.0/UniSpeech/downstreams/speaker_verification')    # We use wavlm_large_finetune as a vadidation metric during training, https://github.com/microsoft/UniSpeech/tree/main/downstreams/speaker_verification
# from verification import init_model
# model_spk = init_model('wavlm_large','/aifs4su/data/zheny/models_fd_ckpt/wavlm_large_finetune.pth')


from transformers import AutoModel, AutoFeatureExtractor


class CodecLightningModule(pl.LightningModule):
    def __init__(self, cfg):
        super().__init__()
        self.cfg = cfg
        self.ocwd = hydra.utils.get_original_cwd()
        self.construct_model()
        self.construct_criteria()
        self.save_hyperparameters()
        self.automatic_optimization = False

    def construct_model(self):
        # 初始化 Codec Encoder
 
        enccfg = self.cfg.model.codec_encoder

 
        self.CodecEnc = CodecEncoder(
 
            ngf=enccfg.ngf,
            up_ratios=enccfg.up_ratios,
            dilations=enccfg.dilations,
            hidden_dim=enccfg['hidden_dim'],
            depth=enccfg['depth'],
            heads=enccfg['heads'],
            pos_meb_dim=enccfg['pos_meb_dim'],
        )

        # 初始化 Codec Decoder
        deccfg = self.cfg.model.codec_decoder

        self.generator = CodecDecoderVocos(
            hidden_dim=deccfg.hidden_dim,     
            depth=deccfg.depth,
            heads=deccfg.heads,
            pos_meb_dim=deccfg.pos_meb_dim,
            hop_length=960,
            vq_num_quantizers=deccfg.vq_num_quantizers,  # VQ 量化器数量
            vq_dim=deccfg.vq_dim,                   # VQ 维度
            vq_commit_weight=deccfg.vq_commit_weight,    # VQ 提交权重
            vq_weight_init=deccfg.vq_weight_init,         # VQ 权重初始化
            vq_full_commit_loss=deccfg.vq_full_commit_loss,  # 是否使用完整的提交损失
            codebook_size=deccfg.codebook_size,            # 码本大小
            codebook_dim=deccfg.codebook_dim ,              # 码本维度
                  # 隐藏层维度
        )
        
 

        # 初始化 MultiPeriod Discriminator
        mpdcfg = self.cfg.model.mpd
        self.discriminator = HiFiGANMultiPeriodDiscriminator(
            periods=mpdcfg.periods,
            max_downsample_channels=mpdcfg.max_downsample_channels,
            channels=mpdcfg.channels,
            channel_increasing_factor=mpdcfg.channel_increasing_factor,
        )

        # 初始化 Spectral Discriminator
        mstftcfg = self.cfg.model.mstft
        self.spec_discriminator = SpecDiscriminator(
            stft_params=mstftcfg.stft_params,
            in_channels=mstftcfg.in_channels,
            out_channels=mstftcfg.out_channels,
            kernel_sizes=mstftcfg.kernel_sizes,
            channels=mstftcfg.channels,
            max_downsample_channels=mstftcfg.max_downsample_channels,
            downsample_scales=mstftcfg.downsample_scales,
            use_weight_norm=mstftcfg.use_weight_norm,
        )

 

        # 单独编译需要优化的子模块
        # self.CodecEnc = torch.compile(self.CodecEnc)
        # self.generator.backbone = torch.compile(self.generator )
        # self.mel_conv = torch.compile(self.mel_conv)
 
        # self.model_spk = model_spk .eval()

        # self.semantic_model = AutoModel.from_pretrained("microsoft/wavlm-large")
        # self.semantic_model.eval()
        # self.semantic_model.requires_grad_(False)

        
        self.speaker_model = AutoModel.from_pretrained("microsoft/wavlm-base-plus-sv")
        self.speaker_feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/wavlm-base-plus-sv")
        self.speaker_model.eval()
        self.speaker_model.requires_grad_(False)

        self.fc_prior = nn.Linear(1024 + 1024, deccfg.vq_dim,   )
        self.fc_post_a = nn.Linear(deccfg.vq_dim,  deccfg.hidden_dim )
        self.fc_post_s = nn.Linear(deccfg.vq_dim,   1024)

        self.SemanticDecoder_module = SemanticDecoder(1024, 1024, 1024)
        self.SemanticEncoder_module = SemanticEncoder(1024, 1024, 1024)
        self.semantic_model = Wav2Vec2BertModel.from_pretrained("facebook/w2v-bert-2.0", output_hidden_states=True)
        self.semantic_model.eval()
        self.semantic_model.requires_grad_(False)
        # self.register_buffer('mel_basis', mel_basis)

        # self.perception_model = AutoModel.from_pretrained("facebook/wav2vec2-large-xlsr-53")
        # self.perception_model.eval()
        # self.perception_model.requires_grad_(False)

    def construct_criteria(self):
        cfg = self.cfg.train
        self.criteria = nn.ModuleDict()
        if cfg.use_mel_loss:
            self.criteria['mel_loss'] = MultiResolutionMelSpectrogramLoss(sample_rate=self.cfg.preprocess.audio.sr)
        if cfg.use_stft_loss:
            self.criteria['stft_loss'] = MultiResolutionSTFTLoss(
                fft_sizes=cfg.stft_loss_params.fft_sizes,
                hop_sizes=cfg.stft_loss_params.hop_sizes,
                win_sizes=cfg.stft_loss_params.win_lengths
            )
        if cfg.use_feat_match_loss:
            self.criteria['fm_loss'] = nn.L1Loss()
        self.criteria['gan_loss'] = GANLoss()
        self.criteria['l1_loss'] = nn.L1Loss()
        self.criteria['l2_loss'] = nn.MSELoss()
        print(self.criteria)

 
 

    # def forward(self, batch):
    #     wav = batch['wav']
    #     feats= batch['feats']
        
    #     vq_emb = self.CodecEnc(wav.unsqueeze(1))
    #     vq_emb = vq_emb.transpose(1, 2)

    #     with torch.no_grad():
    #         semantic_target = self.semantic_model(feats[:,0,:,:])

    #         semantic_target = semantic_target.hidden_states[16]
    #         semantic_target = semantic_target.detach()

    #     semantic_target = semantic_target.transpose(1, 2)
    #     semantic_target_processed = self.SemanticEncoder_module(semantic_target)
    #     # 拼接语义嵌入和编码器输出
    #     vq_emb = torch.cat([semantic_target_processed, vq_emb], dim=1)
    #     vq_emb = self.fc_prior(vq_emb.transpose(1, 2)).transpose(1, 2)

    #     vq_post_emb, vq_code, vq_loss = self.generator(vq_emb, vq=True)
    #     semantic_recon = self.fc_post_s(vq_post_emb.transpose(1, 2)).transpose(1, 2)
    #     semantic_recon = self.SemanticDecoder_module(semantic_recon)

 
    #     y_ ,_ = self.generator(
    #         self.fc_post_a(vq_post_emb.transpose(1, 2)) ,
    #         vq=False
    #     )
    #     y = wav.unsqueeze(1)

    #     # gt_perceptual = self.perception_model(wav.squeeze(1), output_hidden_states=True) .hidden_states
    #     # gen_perceptual = self.perception_model(y_.squeeze(1), output_hidden_states=True) .hidden_states

    #     # gt_perceptual_se = gt_perceptual[10:22]
    #     # gen_perceptual_se = gen_perceptual[10:22]

    #     # perceptual_se_loss = [tensor1 - tensor2 for tensor1, tensor2 in zip(gt_perceptual_se, gen_perceptual_se)]

    #     # # 使用列表推导式逐元素相减
    #     # perceptual_se_loss_l2 = [F.mse_loss(tensor1.detach(), tensor2) for tensor1, tensor2 in zip(gt_perceptual_se, gen_perceptual_se)]
    #     # perceptual_se_loss_l2 =torch.stack(perceptual_se_loss_l2).mean()
    #     output = {
    #         'gt_wav': y,
    #         'gen_wav': y_,
    #         'vq_loss': vq_loss,
    #         'vq_code': vq_code,
    #         'semantic_recon_loss': F.mse_loss(semantic_recon, semantic_target),
    #         # 'perceptual_se_loss_l2': perceptual_se_loss_l2,
 
    #     }
    #     return output

    def forward(self, batch):
        wav = batch['wav']
        feats = batch['feats']
        
        vq_emb = self.CodecEnc(wav.unsqueeze(1))

        with torch.no_grad():
            semantic_target = self.semantic_model(feats)
            semantic_target = semantic_target.hidden_states[16].detach()

        T_codec = vq_emb.shape[1]
        T_semantic = semantic_target.shape[1]
        

        semantic_target_for_loss = semantic_target.clone()
        
        if T_codec != T_semantic:
            semantic_target = F.interpolate(
                semantic_target.transpose(1, 2),
                size=T_codec,
                mode='linear',
                align_corners=False
            ).transpose(1, 2)

        semantic_target_transposed = semantic_target.transpose(1, 2)
        semantic_target_processed = self.SemanticEncoder_module(semantic_target_transposed)
        semantic_target_processed = semantic_target_processed.transpose(1, 2)
        
        vq_emb = torch.cat([semantic_target_processed, vq_emb], dim=2)
        vq_emb = self.fc_prior(vq_emb)
        
        vq_emb = vq_emb.transpose(1, 2)
        vq_post_emb, vq_code, vq_loss = self.generator(vq_emb, vq=True)
        
        vq_post_emb_t = vq_post_emb.transpose(1, 2)
        
        semantic_recon = self.fc_post_s(vq_post_emb_t)
        
        semantic_recon_transposed = semantic_recon.transpose(1, 2)
        semantic_recon = self.SemanticDecoder_module(semantic_recon_transposed)
        semantic_recon = semantic_recon.transpose(1, 2)
        
        # Interpolate back for loss calculation
        if T_codec != T_semantic:
            semantic_recon_for_loss = F.interpolate(
                semantic_recon.transpose(1, 2),
                size=T_semantic,
                mode='linear',
                align_corners=False
            ).transpose(1, 2)
        else:
            semantic_recon_for_loss = semantic_recon

        # Audio generation
        gen_input = self.fc_post_a(vq_post_emb_t)
        y_, _ = self.generator(gen_input.transpose(1, 2), vq=False)
        y = wav.unsqueeze(1)

        output = {
            'gt_wav': y,
            'gen_wav': y_,
            'vq_loss': vq_loss,
            'vq_code': vq_code,
            'semantic_recon_loss': F.mse_loss(semantic_recon_for_loss, semantic_target_for_loss),
        }
        return output
    
    @torch.inference_mode()
    def inference(self, wav):
        vq_emb = self.CodecEnc(wav.unsqueeze(1))
        vq_post_emb, vq_code, vq_loss = self.generator(vq_emb, vq=True)
        y_ = self.generator(vq_post_emb, vq=False).squeeze(1)  # [B, T]
        return y_

    def compute_disc_loss(self, batch, output):
        y, y_ = output['gt_wav'], output['gen_wav']
        y_ = y_.detach()
        p = self.discriminator(y)
        p_ = self.discriminator(y_)

        real_loss_list, fake_loss_list = [], []
        for i in range(len(p)):
            real_loss, fake_loss = self.criteria['gan_loss'].disc_loss(p[i][-1], p_[i][-1])
            real_loss_list.append(real_loss)
            fake_loss_list.append(fake_loss)

        if hasattr(self, 'spec_discriminator'):
            sd_p = self.spec_discriminator(y)
            sd_p_ = self.spec_discriminator(y_)

            for i in range(len(sd_p)):
                real_loss, fake_loss = self.criteria['gan_loss'].disc_loss(sd_p[i][-1], sd_p_[i][-1])
                real_loss_list.append(real_loss)
                fake_loss_list.append(fake_loss)

        real_loss = sum(real_loss_list)
        fake_loss = sum(fake_loss_list)

        disc_loss = real_loss + fake_loss
        disc_loss = self.cfg.train.lambdas.lambda_disc * disc_loss

        output = {
            'real_loss': real_loss,
            'fake_loss': fake_loss,
            'disc_loss': disc_loss,
        }
        return output

    def compute_gen_loss(self, batch, output):
        y, y_ = output['gt_wav'], output['gen_wav']
        vq_loss, vq_code = output['vq_loss'], output['vq_code']
        semantic_recon_loss = output['semantic_recon_loss']
        # perceptual_se_loss_l2 = output['perceptual_se_loss_l2']
        # x_feat_recon_loss = output['x_feat_recon_loss']
        gen_loss = 0.0
        self.set_discriminator_gradients(False)
        output_dict = {}
        cfg = self.cfg.train

        # Mel spectrogram loss
        if cfg.use_mel_loss:
            mel_loss = self.criteria['mel_loss'](y_.squeeze(1), y.squeeze(1))
            gen_loss += mel_loss * cfg.lambdas.lambda_mel_loss
            output_dict['mel_loss'] = mel_loss

        # GAN loss
        p_ = self.discriminator(y_)
        adv_loss_list = []
        for i in range(len(p_)):
            adv_loss_list.append(self.criteria['gan_loss'].gen_loss(p_[i][-1]))
        if hasattr(self, 'spec_discriminator'):
            sd_p_ = self.spec_discriminator(y_)
            for i in range(len(sd_p_)):
                adv_loss_list.append(self.criteria['gan_loss'].gen_loss(sd_p_[i][-1]))
        adv_loss = sum(adv_loss_list)
        gen_loss += adv_loss * cfg.lambdas.lambda_adv
        output_dict['adv_loss'] = adv_loss

        # Feature Matching loss
        if cfg.use_feat_match_loss:
            fm_loss = 0.0
            with torch.no_grad():
                p = self.discriminator(y)
            for i in range(len(p_)):
                for j in range(len(p_[i]) - 1):
                    fm_loss += self.criteria['fm_loss'](p_[i][j], p[i][j].detach())
            gen_loss += fm_loss * cfg.lambdas.lambda_feat_match_loss
            output_dict['fm_loss'] = fm_loss
            if hasattr(self, 'spec_discriminator'):
                spec_fm_loss = 0.0
                with torch.no_grad():
                    sd_p = self.spec_discriminator(y)
                for i in range(len(sd_p_)):
                    for j in range(len(sd_p_[i]) - 1):
                        spec_fm_loss += self.criteria['fm_loss'](sd_p_[i][j], sd_p[i][j].detach())
                gen_loss += spec_fm_loss * cfg.lambdas.lambda_feat_match_loss
                output_dict['spec_fm_loss'] = spec_fm_loss

        # VQ loss
        if vq_loss is not None:
            vq_loss = sum(vq_loss)
            gen_loss += vq_loss
            output_dict['vq_loss'] = vq_loss

        # Semantic reconstruction loss
        output_dict['semantic_recon_loss'] = semantic_recon_loss
        gen_loss += output_dict['semantic_recon_loss'] * cfg.lambdas.lambda_semantic_loss

        # Perceptual loss
        # output_dict['perceptual_se_loss_l2'] = perceptual_se_loss_l2
        # gen_loss += output_dict['perceptual_se_loss_l2'] * cfg.lambdas.lambda_perceptual_loss
        
        self.set_discriminator_gradients(True)
        output_dict['gen_loss'] = gen_loss
        return output_dict

    def training_step(self, batch, batch_idx):
        output = self(batch)

        gen_opt, disc_opt = self.optimizers()
        gen_sche, disc_sche = self.lr_schedulers()

        # 训练判别器
        disc_losses = self.compute_disc_loss(batch, output)
        disc_loss = disc_losses['disc_loss']
        disc_opt.zero_grad()
        self.manual_backward(disc_loss)
        self.clip_gradients(
            disc_opt,
            gradient_clip_val=self.cfg.train.disc_grad_clip,
            gradient_clip_algorithm='norm'
        )
        disc_opt.step()
        disc_sche.step()

        # 训练生成器
        gen_losses = self.compute_gen_loss(batch, output)
        gen_loss = gen_losses['gen_loss']
        gen_opt.zero_grad()
        self.manual_backward(gen_loss)
        self.clip_gradients(
            gen_opt,
            gradient_clip_val=self.cfg.train.gen_grad_clip,
            gradient_clip_algorithm='norm'
        )
        gen_opt.step()
        gen_sche.step()

        # 记录损失
        self.log_dict(
            disc_losses,
            on_step=True,
            on_epoch=True,
            prog_bar=True,
            logger=True,
            batch_size=self.cfg.dataset.train.batch_size,
            sync_dist=True
        )
        self.log_dict(
            gen_losses,
            on_step=True,
            on_epoch=True,
            prog_bar=True,
            logger=True,
            batch_size=self.cfg.dataset.train.batch_size,
            sync_dist=True
        )

    # def validation_step(self, batch, batch_idx):
    #     # 您可以在此处实现验证逻辑
    #     output = self(batch)
    #     y = output['gt_wav']       # 真实音频
    #     y_ = output['gen_wav']  
    #        # 生成的重建音频
    #     embeddings1 = self.model_spk( y.squeeze(1))
        
    #     # 处理目标文件
    #     embeddings2 = self.model_spk(y_.squeeze(1))
        
    #     # 计算余弦相似度
        
    #     sim = F.cosine_similarity(embeddings1, embeddings2)
    #     sim = sim.mean()
        
    #     self.log('val/sim', sim, on_step=False, on_epoch=True, prog_bar=True, logger=True)

    #     return {'sim': sim}
    
    def validation_step(self, batch, batch_idx):
        output = self(batch)
        y = output['gt_wav']       # shape: [B, 1, T]
        y_ = output['gen_wav']     # shape: [B, 1, T]
        
        # Remove channel dimension and move to CPU for processing
        y_audio = y.squeeze(1).cpu().numpy()      # [B, T]
        y_recon_audio = y_.squeeze(1).cpu().numpy()  # [B, T]
        
        embeddings1_list = []
        embeddings2_list = []
        
        # Process each sample in the batch
        for i in range(y_audio.shape[0]):
            # Resample from 24kHz to 16kHz
            y_16k = librosa.resample(y_audio[i], orig_sr=self.cfg.preprocess.audio.sr, target_sr=16000)
            y_recon_16k = librosa.resample(y_recon_audio[i], orig_sr=self.cfg.preprocess.audio.sr, target_sr=16000)
            
            # Extract features
            inputs1 = self.speaker_feature_extractor(
                y_16k, 
                sampling_rate=16000, 
                return_tensors="pt"
            ).to(self.device)
            
            inputs2 = self.speaker_feature_extractor(
                y_recon_16k, 
                sampling_rate=16000, 
                return_tensors="pt"
            ).to(self.device)
            
            # Get embeddings
            with torch.no_grad():
                outputs1 = self.speaker_model(**inputs1)
                outputs2 = self.speaker_model(**inputs2)
                
                # Mean pooling over time dimension
                embedding1 = torch.mean(outputs1.last_hidden_state, dim=1)
                embedding2 = torch.mean(outputs2.last_hidden_state, dim=1)
                
                # L2 normalize
                embedding1 = F.normalize(embedding1, p=2, dim=1)
                embedding2 = F.normalize(embedding2, p=2, dim=1)
                
            embeddings1_list.append(embedding1)
            embeddings2_list.append(embedding2)
        
        # Stack embeddings
        embeddings1 = torch.cat(embeddings1_list, dim=0)
        embeddings2 = torch.cat(embeddings2_list, dim=0)
        
        # Calculate cosine similarity
        sim = F.cosine_similarity(embeddings1, embeddings2)
        sim = sim.mean()
        
        self.log('val/sim', sim, on_step=False, on_epoch=True, prog_bar=True, logger=True)
        
        return {'sim': sim}

 

    def test_step(self, batch, batch_idx):
        # 您可以在此处实现测试逻辑
        pass

    def configure_optimizers(self):
        from itertools import chain

        # 判别器参数
        disc_params = self.discriminator.parameters()
        # if hasattr(self, 'spec_discriminator'):
        disc_params = chain(disc_params, self.spec_discriminator.parameters())

        # 生成器参数
        gen_params = chain(
            self.CodecEnc.parameters(),
            self.generator.parameters(),
            # self.mel_conv.parameters(),
            self.fc_prior.parameters(),
            self.fc_post_a.parameters(),
            self.fc_post_s.parameters(),
            self.SemanticDecoder_module.parameters(),
            self.SemanticEncoder_module.parameters()
        )

        # 优化器
        gen_opt = optim.AdamW(gen_params, **self.cfg.train.gen_optim_params)
        disc_opt = optim.AdamW(disc_params, **self.cfg.train.disc_optim_params)

        # 学习率调度器
        gen_sche = WarmupLR(gen_opt, **self.cfg.train.gen_schedule_params)
        disc_sche = WarmupLR(disc_opt, **self.cfg.train.disc_schedule_params)

        print(f'Generator optim: {gen_opt}')
        print(f'Discriminator optim: {disc_opt}')

        return [gen_opt, disc_opt], [gen_sche, disc_sche]

    def set_discriminator_gradients(self, flag=True):
        for p in self.discriminator.parameters():
            p.requires_grad = flag

        if hasattr(self, 'spec_discriminator'):
            for p in self.spec_discriminator.parameters():
                p.requires_grad = flag