import os import re import torch import torch.nn as nn import torch.nn.functional as F import torchaudio import numpy as np import pytorch_lightning as pl import random import librosa from os.path import basename, exists, join from torch.utils.data import Dataset, DataLoader import hydra import utils import torchaudio from transformers import AutoFeatureExtractor from torchaudio.transforms import Resample from tqdm import tqdm class DataModule(pl.LightningDataModule): def __init__(self, cfg): super().__init__() self.cfg = cfg ocwd = hydra.utils.get_original_cwd() self.ocwd = ocwd def get_loader(self, phase): phase_cfg = self.cfg.dataset.get(phase) batch_size = phase_cfg.batch_size ds = FSDataset(phase, self.cfg) dl = DataLoader(ds, batch_size=batch_size, shuffle=phase_cfg.shuffle, num_workers=8, # Changed from 28 to 0 - NO MULTIPROCESSING collate_fn=ds.collate_fn, pin_memory=True, # Changed to False persistent_workers=False) # Changed to False return dl def train_dataloader(self): return self.get_loader('train') def val_dataloader(self): return self.get_loader('val') def test_dataloader(self): pass class FSDataset(Dataset): """Dataset batching wav, mel and other acoustic features Args: phase: train, val, test cfg: hydra config """ def __init__(self, phase, cfg): self.phase = phase self.cfg = cfg self.phase_cfg = cfg.dataset.get(phase) self.ocwd = hydra.utils.get_original_cwd() self.sr = cfg.preprocess.audio.sr # self.filelist = utils.read_filelist(join(self.ocwd, self.phase_cfg.filelist)) self.filelist = self.get_filelist(self.phase_cfg.filelist) self.min_audio_length = cfg.dataset.min_audio_length self.feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/w2v-bert-2.0") self.resample_to_16k = Resample(24000, 16000) def __len__(self): return len(self.filelist) def load_wav(self, path): wav, sr = librosa.load(path, sr=self.sr) return wav def get_filelist(self, fpath): with open(fpath, 'r') as f: # flist = [l.strip() for l in f if l.strip()] flist = [l.strip().split('\t')[0] for l in f if l.strip()] return flist def __getitem__(self, idx): wavpath = self.filelist[idx] try: wav, sr = torchaudio.load(wavpath) except Exception as e: print(f"Error loading {wavpath}: {e}") wav = torch.zeros((1, self.min_audio_length)) sr = self.sr if sr != 24000: wav = Resample(sr, 24000)(wav) wav = wav[0,:] # Take first channel length = wav.shape[0] if length < self.min_audio_length: wav = F.pad(wav, (0, self.min_audio_length - length)) length = wav.shape[0] i = random.randint(0, length - self.min_audio_length) wav = wav[i:i + self.min_audio_length] # Resample to 16kHz for feature extraction only wav_16k = self.resample_to_16k(wav) wav_16k_pad = F.pad(wav_16k, (160, 160)) feat = self.feature_extractor(wav_16k_pad, sampling_rate=16000, return_tensors="pt").data['input_features'].squeeze(0) out = { 'wav': wav, # Keep original 24kHz for codec training 'feat': feat, } return out def collate_fn(self, bs): wavs = [b['wav'] for b in bs] wavs = torch.stack(wavs) feats = [b['feat'] for b in bs] feats = torch.stack(feats) out = { 'wav': wavs, 'feats': feats, # 'paths': [b['paths'] for b in bs] } return out @hydra.main(config_path='config', config_name='default', version_base=None) def main(cfg): data_module = DataModule(cfg) train_loader = data_module.val_dataloader() valid_filelist = [] for batch_idx, batch in enumerate(tqdm(train_loader, desc="Processing batches", unit="batch")): wavs = batch['wav'] if __name__ == "__main__": main()