File size: 10,028 Bytes
fea8e5f 00ed788 dc5543d 00ed788 dc5543d 00ed788 1e1796b 00ed788 fea8e5f a42a935 41eec97 a42a935 41eec97 a42a935 41eec97 a42a935 41eec97 a42a935 41eec97 a42a935 41eec97 a42a935 41eec97 a42a935 41eec97 a42a935 41eec97 a42a935 00ed788 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
---
language:
- en
license: mit
library_name: peft
datasets:
- AtlasUnified/atlas-storyteller
metrics:
- perplexity
base_model: mistralai/Mistral-7B-v0.1
pipeline_tag: text-generation
model-index:
- name: Mistral-7B-LoreWeaver
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 59.98
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Reverb/Mistral-7B-LoreWeaver
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 83.29
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Reverb/Mistral-7B-LoreWeaver
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.12
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Reverb/Mistral-7B-LoreWeaver
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 42.15
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Reverb/Mistral-7B-LoreWeaver
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 78.37
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Reverb/Mistral-7B-LoreWeaver
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 37.68
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Reverb/Mistral-7B-LoreWeaver
name: Open LLM Leaderboard
---
# Model Card for Model ID
Our finetuned Mistral LLM is a large language model specialized for natural language processing tasks, delivering enhanced performance for a
wide array of applications, including text classification, question-answering, chatbot services, and more.
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** Basel Anaya, Osama Awad, Yazeed Mshayekh
- **Funded by [optional]:** Basel Anaya, Osama Awad, Yazeed Mshayekh
- **Model type:** Autoregressive Language Model
- **Language(s) (NLP):** English
- **License:** MIT License
- **Finetuned from model:** MistralAI's Mistral-7B
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model.
### Direct Use
Users can leverage the finetuned Mistral LLM for various NLP tasks right out-of-the-box. Simply interact with the API or load the model locally to experience superior language understanding and generation capabilities. Ideal for developers seeking rapid prototyping and deployment of conversational AI applications.
### Downstream Use [optional]
Integrate the finetuned Mistral LLM effortlessly into custom applications and pipelines. Utilize the model as a starting point for further refinement, targeting industry-specific lingo, niches, or particular use cases. Seamless compatibility ensures smooth collaboration with adjacent technologies and services.
### Out-of-Scope Use
Limitations exist concerning controversial topics, sensitive data, and scenarios demanding real-time responses. Users should exercise caution when deploying the model in safety-critical situations or regions with strict compliance regulations. Avoid sharing confidential or personally identifiable information with the model.
## Bias, Risks, and Limitations
Address both technical and sociotechnical limitations.
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. Further recommendations include cautious assessment of ethical implications, ongoing maintenance, periodic evaluations, and responsible reporting practices.
## How to Get Started with the Model
Use the code below to get started with the model.
```python
import torch
from transformers import pipeline, AutoTokenizer
# Load the finetuned Mistral LLM
model_name = "Reverb/Mistral-7B-LoreWeaver"
tokenizer = AutoTokenizer.from_pretrained(model_name)
generator = pipeline("text-generation", model=model_name, tokenizer=tokenizer)
# Example usage
input_text = "Once upon a time,"
num_generated_tokens = 50
response = generator(input_text, max_length=num_generated_tokens, num_return_sequences=1)
print(f"Generated text:\n{response[0]['generated_text']}")
# Alternatively, for fine-grained control over the generation process
inputs = tokenizer(input_text, return_tensors="pt")
outputs = generator.generate(
inputs["input_ids"].to("cuda"),
max_length=num_generated_tokens,
num_beams=5,
early_stopping=True,
temperature=1.2,
)
generated_sentence = tokenizer.decode(outputs[0])
print(f"\nGenerated text with beam search and custom params:\n{generated_sentence}")
```
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.7.1
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Reverb__Mistral-7B-LoreWeaver)
| Metric |Value|
|---------------------------------|----:|
|Avg. |60.93|
|AI2 Reasoning Challenge (25-Shot)|59.98|
|HellaSwag (10-Shot) |83.29|
|MMLU (5-Shot) |64.12|
|TruthfulQA (0-shot) |42.15|
|Winogrande (5-shot) |78.37|
|GSM8k (5-shot) |37.68|
|