Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) orpo-lora-phi2 - GGUF - Model creator: https://huggingface.co/Amu/ - Original model: https://huggingface.co/Amu/orpo-lora-phi2/ | Name | Quant method | Size | | ---- | ---- | ---- | | [orpo-lora-phi2.Q2_K.gguf](https://huggingface.co/RichardErkhov/Amu_-_orpo-lora-phi2-gguf/blob/main/orpo-lora-phi2.Q2_K.gguf) | Q2_K | 1.03GB | | [orpo-lora-phi2.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/Amu_-_orpo-lora-phi2-gguf/blob/main/orpo-lora-phi2.IQ3_XS.gguf) | IQ3_XS | 1.12GB | | [orpo-lora-phi2.IQ3_S.gguf](https://huggingface.co/RichardErkhov/Amu_-_orpo-lora-phi2-gguf/blob/main/orpo-lora-phi2.IQ3_S.gguf) | IQ3_S | 1.16GB | | [orpo-lora-phi2.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/Amu_-_orpo-lora-phi2-gguf/blob/main/orpo-lora-phi2.Q3_K_S.gguf) | Q3_K_S | 1.16GB | | [orpo-lora-phi2.IQ3_M.gguf](https://huggingface.co/RichardErkhov/Amu_-_orpo-lora-phi2-gguf/blob/main/orpo-lora-phi2.IQ3_M.gguf) | IQ3_M | 1.23GB | | [orpo-lora-phi2.Q3_K.gguf](https://huggingface.co/RichardErkhov/Amu_-_orpo-lora-phi2-gguf/blob/main/orpo-lora-phi2.Q3_K.gguf) | Q3_K | 1.33GB | | [orpo-lora-phi2.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/Amu_-_orpo-lora-phi2-gguf/blob/main/orpo-lora-phi2.Q3_K_M.gguf) | Q3_K_M | 1.33GB | | [orpo-lora-phi2.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/Amu_-_orpo-lora-phi2-gguf/blob/main/orpo-lora-phi2.Q3_K_L.gguf) | Q3_K_L | 1.47GB | | [orpo-lora-phi2.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/Amu_-_orpo-lora-phi2-gguf/blob/main/orpo-lora-phi2.IQ4_XS.gguf) | IQ4_XS | 1.43GB | | [orpo-lora-phi2.Q4_0.gguf](https://huggingface.co/RichardErkhov/Amu_-_orpo-lora-phi2-gguf/blob/main/orpo-lora-phi2.Q4_0.gguf) | Q4_0 | 1.49GB | | [orpo-lora-phi2.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/Amu_-_orpo-lora-phi2-gguf/blob/main/orpo-lora-phi2.IQ4_NL.gguf) | IQ4_NL | 1.5GB | | [orpo-lora-phi2.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/Amu_-_orpo-lora-phi2-gguf/blob/main/orpo-lora-phi2.Q4_K_S.gguf) | Q4_K_S | 1.51GB | | [orpo-lora-phi2.Q4_K.gguf](https://huggingface.co/RichardErkhov/Amu_-_orpo-lora-phi2-gguf/blob/main/orpo-lora-phi2.Q4_K.gguf) | Q4_K | 1.62GB | | [orpo-lora-phi2.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/Amu_-_orpo-lora-phi2-gguf/blob/main/orpo-lora-phi2.Q4_K_M.gguf) | Q4_K_M | 1.62GB | | [orpo-lora-phi2.Q4_1.gguf](https://huggingface.co/RichardErkhov/Amu_-_orpo-lora-phi2-gguf/blob/main/orpo-lora-phi2.Q4_1.gguf) | Q4_1 | 1.65GB | | [orpo-lora-phi2.Q5_0.gguf](https://huggingface.co/RichardErkhov/Amu_-_orpo-lora-phi2-gguf/blob/main/orpo-lora-phi2.Q5_0.gguf) | Q5_0 | 1.8GB | | [orpo-lora-phi2.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/Amu_-_orpo-lora-phi2-gguf/blob/main/orpo-lora-phi2.Q5_K_S.gguf) | Q5_K_S | 1.8GB | | [orpo-lora-phi2.Q5_K.gguf](https://huggingface.co/RichardErkhov/Amu_-_orpo-lora-phi2-gguf/blob/main/orpo-lora-phi2.Q5_K.gguf) | Q5_K | 1.87GB | | [orpo-lora-phi2.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/Amu_-_orpo-lora-phi2-gguf/blob/main/orpo-lora-phi2.Q5_K_M.gguf) | Q5_K_M | 1.87GB | | [orpo-lora-phi2.Q5_1.gguf](https://huggingface.co/RichardErkhov/Amu_-_orpo-lora-phi2-gguf/blob/main/orpo-lora-phi2.Q5_1.gguf) | Q5_1 | 1.95GB | | [orpo-lora-phi2.Q6_K.gguf](https://huggingface.co/RichardErkhov/Amu_-_orpo-lora-phi2-gguf/blob/main/orpo-lora-phi2.Q6_K.gguf) | Q6_K | 2.13GB | | [orpo-lora-phi2.Q8_0.gguf](https://huggingface.co/RichardErkhov/Amu_-_orpo-lora-phi2-gguf/blob/main/orpo-lora-phi2.Q8_0.gguf) | Q8_0 | 2.75GB | Original model description: --- language: - en license: apache-2.0 tags: - generated_from_trainer base_model: microsoft/phi-2 pipeline_tag: text-generation --- # outputs This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) using [trl](https://github.com/huggingface/trl) on [ultrafeedback dataset](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized). # What's new A test for [ORPO: Monolithic Preference Optimization without Reference Model](https://arxiv.org/pdf/2403.07691.pdf) method using trl library. ## How to reproduce ```bash accelerate launch --config_file=/path/to/trl/examples/accelerate_configs/deepspeed_zero2.yaml \ --num_processes 8 \ /path/to/trl/scripts/orpo.py \ --model_name_or_path="microsoft/phi-2" \ --per_device_train_batch_size 1 \ --max_steps 8000 \ --learning_rate 8e-5 \ --gradient_accumulation_steps 1 \ --logging_steps 20 \ --eval_steps 2000 \ --output_dir="orpo-lora-phi2" \ --optim rmsprop \ --warmup_steps 150 \ --bf16 \ --logging_first_step \ --no_remove_unused_columns \ --use_peft \ --lora_r=16 \ --lora_alpha=16 \ --dataset HuggingFaceH4/ultrafeedback_binarized ```