Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) astrollama-3-8b-base_aic - GGUF - Model creator: https://huggingface.co/AstroMLab/ - Original model: https://huggingface.co/AstroMLab/astrollama-3-8b-base_aic/ | Name | Quant method | Size | | ---- | ---- | ---- | | [astrollama-3-8b-base_aic.Q2_K.gguf](https://huggingface.co/RichardErkhov/AstroMLab_-_astrollama-3-8b-base_aic-gguf/blob/main/astrollama-3-8b-base_aic.Q2_K.gguf) | Q2_K | 2.96GB | | [astrollama-3-8b-base_aic.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/AstroMLab_-_astrollama-3-8b-base_aic-gguf/blob/main/astrollama-3-8b-base_aic.Q3_K_S.gguf) | Q3_K_S | 3.41GB | | [astrollama-3-8b-base_aic.Q3_K.gguf](https://huggingface.co/RichardErkhov/AstroMLab_-_astrollama-3-8b-base_aic-gguf/blob/main/astrollama-3-8b-base_aic.Q3_K.gguf) | Q3_K | 3.74GB | | [astrollama-3-8b-base_aic.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/AstroMLab_-_astrollama-3-8b-base_aic-gguf/blob/main/astrollama-3-8b-base_aic.Q3_K_M.gguf) | Q3_K_M | 3.74GB | | [astrollama-3-8b-base_aic.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/AstroMLab_-_astrollama-3-8b-base_aic-gguf/blob/main/astrollama-3-8b-base_aic.Q3_K_L.gguf) | Q3_K_L | 2.44GB | | [astrollama-3-8b-base_aic.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/AstroMLab_-_astrollama-3-8b-base_aic-gguf/blob/main/astrollama-3-8b-base_aic.IQ4_XS.gguf) | IQ4_XS | 3.28GB | | [astrollama-3-8b-base_aic.Q4_0.gguf](https://huggingface.co/RichardErkhov/AstroMLab_-_astrollama-3-8b-base_aic-gguf/blob/main/astrollama-3-8b-base_aic.Q4_0.gguf) | Q4_0 | 4.34GB | | [astrollama-3-8b-base_aic.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/AstroMLab_-_astrollama-3-8b-base_aic-gguf/blob/main/astrollama-3-8b-base_aic.IQ4_NL.gguf) | IQ4_NL | 4.38GB | | [astrollama-3-8b-base_aic.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/AstroMLab_-_astrollama-3-8b-base_aic-gguf/blob/main/astrollama-3-8b-base_aic.Q4_K_S.gguf) | Q4_K_S | 4.37GB | | [astrollama-3-8b-base_aic.Q4_K.gguf](https://huggingface.co/RichardErkhov/AstroMLab_-_astrollama-3-8b-base_aic-gguf/blob/main/astrollama-3-8b-base_aic.Q4_K.gguf) | Q4_K | 4.58GB | | [astrollama-3-8b-base_aic.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/AstroMLab_-_astrollama-3-8b-base_aic-gguf/blob/main/astrollama-3-8b-base_aic.Q4_K_M.gguf) | Q4_K_M | 4.58GB | | [astrollama-3-8b-base_aic.Q4_1.gguf](https://huggingface.co/RichardErkhov/AstroMLab_-_astrollama-3-8b-base_aic-gguf/blob/main/astrollama-3-8b-base_aic.Q4_1.gguf) | Q4_1 | 4.78GB | | [astrollama-3-8b-base_aic.Q5_0.gguf](https://huggingface.co/RichardErkhov/AstroMLab_-_astrollama-3-8b-base_aic-gguf/blob/main/astrollama-3-8b-base_aic.Q5_0.gguf) | Q5_0 | 5.21GB | | [astrollama-3-8b-base_aic.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/AstroMLab_-_astrollama-3-8b-base_aic-gguf/blob/main/astrollama-3-8b-base_aic.Q5_K_S.gguf) | Q5_K_S | 5.21GB | | [astrollama-3-8b-base_aic.Q5_K.gguf](https://huggingface.co/RichardErkhov/AstroMLab_-_astrollama-3-8b-base_aic-gguf/blob/main/astrollama-3-8b-base_aic.Q5_K.gguf) | Q5_K | 5.34GB | | [astrollama-3-8b-base_aic.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/AstroMLab_-_astrollama-3-8b-base_aic-gguf/blob/main/astrollama-3-8b-base_aic.Q5_K_M.gguf) | Q5_K_M | 5.34GB | | [astrollama-3-8b-base_aic.Q5_1.gguf](https://huggingface.co/RichardErkhov/AstroMLab_-_astrollama-3-8b-base_aic-gguf/blob/main/astrollama-3-8b-base_aic.Q5_1.gguf) | Q5_1 | 5.65GB | | [astrollama-3-8b-base_aic.Q6_K.gguf](https://huggingface.co/RichardErkhov/AstroMLab_-_astrollama-3-8b-base_aic-gguf/blob/main/astrollama-3-8b-base_aic.Q6_K.gguf) | Q6_K | 6.14GB | | [astrollama-3-8b-base_aic.Q8_0.gguf](https://huggingface.co/RichardErkhov/AstroMLab_-_astrollama-3-8b-base_aic-gguf/blob/main/astrollama-3-8b-base_aic.Q8_0.gguf) | Q8_0 | 7.95GB | Original model description: --- license: mit language: - en pipeline_tag: text-generation tags: - llama-3 - astronomy - astrophysics - arxiv inference: false base_model: - meta-llama/Llama-3-8b-hf --- # AstroLLaMA-3-8B-Base_AIC AstroLLaMA-3-8B is a specialized base language model for astronomy, developed by fine-tuning Meta's LLaMA-3-8b architecture on astronomical literature. This model was developed by the AstroMLab team. It is designed for next token prediction tasks and is not an instruct/chat model. ## Model Details - **Base Architecture**: LLaMA-3-8b - **Training Data**: Abstract, Introduction, and Conclusion (AIC) sections from arXiv's astro-ph category papers - **Data Processing**: Optical character recognition (OCR) on PDF files using the Nougat tool, followed by summarization using Qwen-2-8B and LLaMA-3.1-8B. - **Fine-tuning Method**: Continual Pre-Training (CPT) using the LMFlow framework - **Training Details**: - Learning rate: 2 × 10⁻⁵ - Total batch size: 96 - Maximum token length: 512 - Warmup ratio: 0.03 - No gradient accumulation - BF16 format - Cosine decay schedule for learning rate reduction - Training duration: 1 epoch - **Primary Use**: Next token prediction for astronomy-related text generation and analysis - **Reference**: Pan et al. 2024 [Link to be added] ## Generating text from a prompt ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Load the model and tokenizer tokenizer = AutoTokenizer.from_pretrained("AstroMLab/astrollama-3-8b-base_aic") model = AutoModelForCausalLM.from_pretrained("AstroMLab/astrollama-3-8b-base_aic", device_map="auto") # Create the pipeline with explicit truncation from transformers import pipeline generator = pipeline( "text-generation", model=model, tokenizer=tokenizer, device_map="auto", truncation=True, max_length=512 ) # Example prompt from an astronomy paper prompt = "In this letter, we report the discovery of the highest redshift, " \ "heavily obscured, radio-loud QSO candidate selected using JWST NIRCam/MIRI, " \ "mid-IR, sub-mm, and radio imaging in the COSMOS-Web field. " # Set seed for reproducibility torch.manual_seed(42) # Generate text generated_text = generator(prompt, do_sample=True) print(generated_text[0]['generated_text']) ``` ## Model Limitations and Biases A key limitation identified during the development of this model is that training solely on astro-ph data may not be sufficient to significantly improve performance over the base model, especially for the already highly performant LLaMA-3 series. This suggests that to achieve substantial gains, future iterations may need to incorporate a broader range of high-quality astronomical data beyond arXiv, such as textbooks, Wikipedia, and curated summaries. Here's a performance comparison chart based upon the astronomical benchmarking Q&A as described in [Ting et al. 2024](https://arxiv.org/abs/2407.11194), and Pan et al. 2024: | Model | Score (%) | |-------|-----------| | LLaMA-3.1-8B | 73.7 | | LLaMA-3-8B | 72.9 | | **AstroLLaMA-3-8B-Base_AIC (AstroMLab)** | **71.9** | | Gemma-2-9B | 71.5 | | Qwen-2.5-7B | 70.4 | | Yi-1.5-9B | 68.4 | | InternLM-2.5-7B | 64.5 | | Mistral-7B-v0.3 | 63.9 | | ChatGLM3-6B | 50.4 | | AstroLLaMA-2-7B-AIC | 44.3 | | AstroLLaMA-2-7B-Abstract | 43.5 | As shown, while AstroLLaMA-3-8B performs competitively among models in its class, it does not surpass the performance of the base LLaMA-3-8B model. This underscores the challenges in developing specialized models and the need for more diverse and comprehensive training data. This model is released primarily for reproducibility purposes, allowing researchers to track the development process and compare different iterations of AstroLLaMA models. For optimal performance and the most up-to-date capabilities in astronomy-related tasks, we recommend using AstroSage-8B, where these limitations have been addressed. The newer model incorporates expanded training data beyond astro-ph and features a greatly expanded fine-tuning process, resulting in significantly improved performance. ## Ethical Considerations While this model is designed for scientific use, users should be mindful of potential misuse, such as generating misleading scientific content. Always verify model outputs against peer-reviewed sources for critical applications. ## Citation If you use this model in your research, please cite: ``` [Citation for Pan et al. 2024 to be added] ```