File size: 3,957 Bytes
699da00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
hebrew-bad_wiki-gpt_neo-tiny - bnb 8bits
- Model creator: https://huggingface.co/Norod78/
- Original model: https://huggingface.co/Norod78/hebrew-bad_wiki-gpt_neo-tiny/
Original model description:
---
language: he
thumbnail: https://avatars1.githubusercontent.com/u/3617152?norod.jpg
widget:
- text: "מתמטיקה:"
- text: "עליית המכונות"
- text: "ויקיפדיה העברית"
- text: "האירוויזיון הוא"
- text: "דוד בן-גוריון היה"
license: mit
---
# hebrew-bad_wiki-gpt_neo-tiny
## Table of Contents
- [Model Details](#model-details)
- [Uses](#uses)
- [Risks, Limitations and Biases](#risks-limitations-and-biases)
- [Training](#training)
- [Evaluation](#evaluation)
- [Environmental Impact](#environmental-impact)
- [How to Get Started With the Model](#how-to-get-started-with-the-model)
## Model Details
**Model Description:**
The model developer notes that the model is
> Hebrew nonsense generation model which produces really bad wiki-abstract text.
- **Developed by:** [Doron Adler](https://github.com/Norod)
- **Model Type:** Text Generation
- **Language(s):** Hebrew
- **License:** MIT
- **Resources for more information:**
- [GitHub Repo](https://github.com/Norod/hebrew-gpt_neo)
- [HuggingFace Space](https://huggingface.co/spaces/Norod78/Hebrew-GPT-Neo-Small)
## Uses
#### Direct Use
This model can be used for text generation.
#### Misuse and Out-of-scope Use
## Risks, Limitations and Biases
**CONTENT WARNING: Readers should be aware this section contains content that is disturbing, offensive, and can propagate historical and current stereotypes.**
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)).
## Training
#### Training Data
[Hebrew Wikipedia Dump](https://dumps.wikimedia.org/hewiki/latest/) (hewiki abstract) from May 2020
#### Training Procedure
This model was fined tuned upon [hebrew-gpt_neo-tiny](https://huggingface.co/Norod78/hebrew-gpt_neo-tiny) which was previously trained using [EleutherAI's gpt-neo](https://github.com/EleutherAI/gpt-neo).
Fine-tuning on the wiki-absract text was done using [@minimaxir](https://twitter.com/minimaxir)'s [aitextgen](https://github.com/minimaxir/aitextgen).
## Evaluation
#### Configs
Model configs for the hebrew-gpt_neo-tiny is available on the [hebrew-gpt_neo model github](https://github.com/Norod/hebrew-gpt_neo/tree/main/hebrew-gpt_neo-tiny/configs)
* **Activation Function:** gelu
* **Number_Head:** 12
* **Number_Vocab:** 50257
* **Train batch size:** 250
* **Eval batch size:** 64
* **Predict batch size:** 1
## Environmental Impact
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). We present the hardware type based on the [associated paper](https://arxiv.org/pdf/2105.09680.pdf).
- **Hardware Type:** [More information needed]
- **Hours used:** Unknown
- **Cloud Provider:** GCP tpu-v8s
- **Compute Region:** europe-west4
- **Carbon Emitted:** [More information needed]
## How to Get Started With the Model
A Google Colab Notebook is also available [here](https://colab.research.google.com/github/Norod/hebrew-gpt_neo/blob/main/hebrew-gpt_neo-tiny/Norod78_hebrew_gpt_neo_tiny_Colab.ipynb)
```
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("Norod78/hebrew-bad_wiki-gpt_neo-tiny")
model = AutoModelForCausalLM.from_pretrained("Norod78/hebrew-bad_wiki-gpt_neo-tiny")
```
|