RichardErkhov commited on
Commit
8e995b0
1 Parent(s): 82c5d8e

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +385 -0
README.md ADDED
@@ -0,0 +1,385 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ SeaLLM-7B-v2 - bnb 8bits
11
+ - Model creator: https://huggingface.co/SeaLLMs/
12
+ - Original model: https://huggingface.co/SeaLLMs/SeaLLM-7B-v2/
13
+
14
+
15
+
16
+
17
+ Original model description:
18
+ ---
19
+ license: other
20
+ license_name: seallms
21
+ license_link: https://huggingface.co/SeaLLMs/SeaLLM-13B-Chat/blob/main/LICENSE
22
+ language:
23
+ - en
24
+ - zh
25
+ - vi
26
+ - id
27
+ - th
28
+ - ms
29
+ - km
30
+ - lo
31
+ - my
32
+ - tl
33
+ tags:
34
+ - multilingual
35
+ - sea
36
+ ---
37
+
38
+ <p align="center">
39
+ <img src="seal_logo.png" width="200" />
40
+ </p>
41
+
42
+ # *SeaLLM-7B-v2* - Large Language Models for Southeast Asia
43
+
44
+ # <strong style="color: red">BIG NEWS: <a href="https://huggingface.co/SeaLLMs/SeaLLM-7B-v2.5">SeaLLM-7B-v2.5</a> is released with state-of-the-art performance in world knowledge and reasoning. SeaLLM-7B-v2 will begin deprecation.</strong>
45
+
46
+
47
+ <p align="center">
48
+ <a href="https://damo-nlp-sg.github.io/SeaLLMs/" target="_blank" rel="noopener">Technical Blog</a>
49
+ &nbsp;&nbsp;
50
+ <a href="https://huggingface.co/SeaLLMs/SeaLLM-7B-v2" target="_blank" rel="noopener"> 🤗 Tech Memo</a>
51
+ &nbsp;&nbsp;
52
+ <a href="https://huggingface.co/spaces/SeaLLMs/SeaLLM-7B" target="_blank" rel="noopener"> 🤗 DEMO</a>
53
+ &nbsp;&nbsp;
54
+ <a href="https://github.com/DAMO-NLP-SG/SeaLLMs" target="_blank" rel="noopener">Github</a>
55
+ &nbsp;&nbsp;
56
+ <a href="https://arxiv.org/pdf/2312.00738.pdf" target="_blank" rel="noopener">Technical Report</a>
57
+ </p>
58
+
59
+ We introduce [SeaLLM-7B-v2](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2), the state-of-the-art multilingual LLM for Southeast Asian (SEA) languages 🇬🇧 🇨🇳 🇻🇳 🇮🇩 🇹🇭 🇲🇾 🇰🇭 🇱🇦 🇲🇲 🇵🇭. It is the most significant upgrade since [SeaLLM-13B](https://huggingface.co/SeaLLMs/SeaLLM-13B-Chat), with half the size, outperforming performance across diverse multilingual tasks, from world knowledge, math reasoning, instruction following, etc.
60
+
61
+ ### Highlights
62
+ * [SeaLLM-7B-v2](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2) achieves the **7B-SOTA** on the **Zero-shot CoT GSM8K** task with **78.2** score and outperforms GPT-3.5 in many GSM8K-translated tasks in SEA languages (🇨🇳 🇻🇳 🇮🇩 🇹🇭) as well as MGSM (🇨🇳 🇹🇭). It also surpasses GPT-3.5 in MATH CoT for Thai 🇹🇭.
63
+ * It scores competitively against GPT-3.5 in many zero-shot CoT commonsense benchmark, with **82.5, 68.3, 80.9** scores on Arc-C, Winogrande, and Hellaswag.
64
+ * It achieves **7.54** score on the 🇬🇧 **MT-bench**, it ranks 3rd place on the leaderboard for 7B category and is the most outperforming multilingual model.
65
+ * It scores **45.74** on the VMLU benchmark for Vietnamese 🇻🇳, and is the only open-source multilingual model that can be competitive to monolingual models ([Vistral-7B](https://huggingface.co/Viet-Mistral/Vistral-7B-Chat)) of similar sizes.
66
+
67
+
68
+ ### Release and DEMO
69
+
70
+ - DEMO: [SeaLLMs/SeaLLM-7B](https://huggingface.co/spaces/SeaLLMs/SeaLLM-7B).
71
+ - Technical report: [Arxiv: SeaLLMs - Large Language Models for Southeast Asia](https://arxiv.org/pdf/2312.00738.pdf).
72
+ - Model weights:
73
+ - [SeaLLM-7B-v2](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2).
74
+ - [SeaLLM-7B-v2-gguf](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2-gguf).
75
+ - [SeaLLM-7B-v2-GGUF (thanks Lonestriker)](https://huggingface.co/LoneStriker/SeaLLM-7B-v2-GGUF). NOTE: use [seallm.preset.json](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2-gguf/blob/main/seallm.preset.json) to work properly.
76
+ - Run locally:
77
+ - [LM-studio](https://lmstudio.ai/):
78
+ - [SeaLLM-7B-v2-q4_0](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2-gguf/blob/main/SeaLLM-7B-v2.q4_0.gguf) and [SeaLLM-7B-v2-q8_0](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2-gguf/blob/main/SeaLLM-7B-v2.q8_0.gguf).
79
+ - LM-studio requires this [seallm.preset.json](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2-gguf/blob/main/seallm.preset.json) to set chat template properly.
80
+ - [ollama](https://ollama.ai/) `ollama run nxphi47/seallm-7b-v2:q4_0`
81
+ - [MLX for Apple Silicon](https://github.com/ml-explore/mlx): [mlx-community/SeaLLM-7B-v2-4bit-mlx](https://huggingface.co/mlx-community/SeaLLM-7B-v2-4bit-mlx)
82
+
83
+ <blockquote style="color:red">
84
+ <p><strong style="color: red">Terms of Use and License</strong>:
85
+ By using our released weights, codes, and demos, you agree to and comply with the terms and conditions specified in our <a href="https://huggingface.co/SeaLLMs/SeaLLM-Chat-13b/edit/main/LICENSE" target="_blank" rel="noopener">SeaLLMs Terms Of Use</a>.
86
+ </blockquote>
87
+
88
+ > **Disclaimer**:
89
+ > We must note that even though the weights, codes, and demos are released in an open manner, similar to other pre-trained language models, and despite our best efforts in red teaming and safety fine-tuning and enforcement, our models come with potential risks, including but not limited to inaccurate, misleading or potentially harmful generation.
90
+ > Developers and stakeholders should perform their own red teaming and provide related security measures before deployment, and they must abide by and comply with local governance and regulations.
91
+ > In no event shall the authors be held liable for any claim, damages, or other liability arising from the use of the released weights, codes, or demos.
92
+
93
+ > The logo was generated by DALL-E 3.
94
+
95
+
96
+ ### What's new since SeaLLM-13B-v1 and SeaLLM-7B-v1?
97
+
98
+ * SeaLLM-7B-v2 is continue-pretrained from [Mistral-7B](https://huggingface.co/mistralai/Mistral-7B-v0.1) and underwent carefully designed tuning with focus in reasoning.
99
+
100
+
101
+ ## Evaluation
102
+
103
+
104
+ ### Zero-shot CoT Multilingual Math Reasoning
105
+
106
+ [SeaLLM-7B-v2](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2) achieves with **78.2** score on the GSM8K with zero-shot CoT reasoning, making it the **state of the art** in the realm of 7B models. It also outperforms GPT-3.5 in the same GSM8K benchmark as translated into SEA languages (🇨🇳 🇻🇳 🇮🇩 🇹🇭). [SeaLLM-7B-v2](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2) also surpasses GPT-3.5 on the Thai-translated MATH benchmark, with **22.4** vs 18.1 scores.
107
+
108
+ ![fig_sea_math_side_by_side.png](fig_sea_math_side_by_side.png)
109
+
110
+
111
+ <details>
112
+ <summary>See details on English and translated GSM8K and MATH with zero-shot reasoning</summary>
113
+ <br>
114
+
115
+ | Model | GSM8K<br>en | MATH<br>en | GSM8K<br>zh | MATH<br>zh | GSM8K<br>vi | MATH<br>vi | GSM8K<br>id | MATH<br>id | GSM8K<br>th | MATH<br>th
116
+ | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
117
+ | GPT-3.5 | 80.8 | 34.1 | 48.2 | 21.5 | 55 | 26.5 | 64.3 | 26.4 | 35.8 | 18.1
118
+ | Qwen-14B-chat | 61.4 | 18.4 | 41.6 | 11.8 | 33.6 | 3.6 | 44.7 | 8.6 | 22 | 6
119
+ | Vistral-7b-chat | 48.2 | 12.5 | | | 48.7 | 3.1 | | | |
120
+ | Qwen1.5-7B-chat | 56.8 | 15.3 | 40 | 2.7 | 37.7 | 9 | 36.9 | 7.7 | 21.9 |
121
+ | SeaLLM-7B-v2 | 78.2 | 27.5 | 53.7 | 17.6 | 69.9 | 23.8 | 71.5 | 24.4 | 59.6 | 22.4
122
+
123
+ </details>
124
+
125
+ Baselines were evaluated using their respective chat-template and system prompts ([Qwen1.5-7B-chat](https://huggingface.co/Qwen/Qwen1.5-7B-Chat/blob/main/tokenizer_config.json), [Vistral](https://huggingface.co/Viet-Mistral/Vistral-7B-Chat)).
126
+
127
+ #### Zero-shot MGSM
128
+
129
+ [SeaLLM-7B-v2](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2) also outperforms GPT-3.5 and Qwen-14B on the multilingual MGSM for Zh and Th.
130
+
131
+ | Model | MGSM-Zh | MGSM-Th
132
+ |-----| ----- | ---
133
+ | ChatGPT (reported) | 61.2 | 47.2
134
+ | Qwen-14B-chat | 59.6 | 28
135
+ | SeaLLM-7B-v2 | **64.8** | **62.4**
136
+
137
+
138
+ ### Zero-shot Commonsense Reasoning
139
+
140
+ We compare [SeaLLM-7B-v2](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2) with ChatGPT and Mistral-7B-instruct on various zero-shot commonsense benchmarks (Arc-Challenge, Winogrande and Hellaswag). We use the 2-stage technique in [(Kojima et al., 2023)](https://arxiv.org/pdf/2205.11916.pdf) to grab the answer. Note that we **DID NOT** use "Let's think step-by-step" to invoke explicit CoT.
141
+
142
+ | 0-shot reasoning | Arc-Challenge | Winogrande | Hellaswag
143
+ |-----| ----- | --- | -- |
144
+ | ChatGPT (reported) | 84.6* | 66.8* | 72.0*
145
+ | ChatGPT (reproduced)| 84.1 | 63.1 | 79.5
146
+ | Mistral-7B-Instruct | 68.1 | 56.4 | 45.6
147
+ | Qwen1.5-7B-chat | 79.3 | 59.4 | 69.3
148
+ | SeaLLM-7B-v2 | 82.5 | 68.3 | 80.9
149
+
150
+ Baselines were evaluated using their respective chat-template and system prompts ([Qwen1.5-7B-chat](https://huggingface.co/Qwen/Qwen1.5-7B-Chat/blob/main/tokenizer_config.json), [Mistral](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1)).
151
+
152
+ ### Multilingual World Knowledge
153
+
154
+
155
+ We evaluate models on 3 benchmarks following the recommended default setups: 5-shot MMLU for En, 3-shot [M3Exam](https://arxiv.org/pdf/2306.05179.pdf) (M3e) for En, Zh, Vi, Id, Th, and zero-shot [VMLU](https://vmlu.ai/) for Vi.
156
+
157
+ | Model | Langs | En<br>MMLU | En<br>M3e | Zh<br>M3e | Vi<br>M3e | Vi<br>VMLU | Id<br>M3e | Th<br>M3e
158
+ |-----| ----- | --- | -- | ----- | ---- | --- | --- | --- |
159
+ | GPT-3.5 | Multi | 68.90 | 75.46 | 60.20 | 58.64 | 46.32 | 49.27 | 37.41
160
+ | Vistral-7B-chat | Mono | 56.86 | 67.00 | 44.56 | 54.33 | 50.03 | 36.49 | 25.27
161
+ | Qwen1.5-7B-chat | Multi | 61.00 | 52.07 | 81.96 | 43.38 | 45.02 | 24.29 | 20.25
162
+ | SeaLLM-7B-v2 | Multi | 61.89 | 70.91 | 55.43 | 51.15 | 45.74 | 42.25 | 35.52
163
+
164
+
165
+ VMLU reproduce script [here](https://github.com/DAMO-NLP-SG/SeaLLMs/blob/main/evaluation/vmlu/vmlu_run.py). Lm-eval was used to evaluate MMLU.
166
+ 0-shot VMLU scores for baselines were evaluated using their respective chat-template and system prompts ([Qwen1.5-7B-chat](https://huggingface.co/Qwen/Qwen1.5-7B-Chat/blob/main/tokenizer_config.json)).
167
+
168
+
169
+ ### MT-Bench
170
+
171
+ On the English [MT-bench](https://arxiv.org/abs/2306.05685) metric, SeaLLM-7B-v2 achieves **7.54** score on the MT-bench (3rd place on the leaderboard for 7B category), outperforms many 70B models and is arguably the only one that handles 10 SEA languages.
172
+
173
+ Refer to [mt_bench/seallm_7b_v2.jsonl](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2/blob/main/evaluation/mt_bench/seallm_7b_v2.jsonl) for the MT-bench predictions of SeaLLM-7B-v2, and [here](https://github.com/lm-sys/FastChat/issues/3013#issue-2118685341) to reproduce it.
174
+
175
+ | Model | Access | Langs | MT-Bench
176
+ | --- | --- | --- | --- |
177
+ | GPT-4-turbo | closed | multi | 9.32
178
+ | GPT-4-0613 | closed | multi | 9.18
179
+ | Mixtral-8x7b (46B) | open | multi | 8.3
180
+ | Starling-LM-7B-alpha | open | mono (en) | 8.0
181
+ | OpenChat-3.5-7B | open | mono (en) | 7.81
182
+ | **SeaLLM-7B-v2** | **open** | **multi (10+)** | **7.54**
183
+ | [Qwen-14B](https://huggingface.co/Qwen/Qwen-14B-Chat) | open | multi | 6.96
184
+ | [Llama-2-70B](https://huggingface.co/meta-llama/Llama-2-70b-chat-hf) | open | mono (en) | 6.86
185
+ | Mistral-7B-instuct | open | mono (en) | 6.84
186
+
187
+
188
+ ### Sea-Bench
189
+
190
+ Similar to MT-Bench, [Sea-bench](https://huggingface.co/datasets/SeaLLMs/Sea-bench) is a set of categorized instruction test sets to measure models' ability as an assistant that is specifically focused on 9 SEA languages, including non-Latin low-resource languages.
191
+
192
+ As shown, the huge improvements come from math-reasoning, reaching GPT-3.5 level of performance.
193
+
194
+ ![fig_sea_bench_side_by_side.png](fig_sea_bench_side_by_side.png)
195
+
196
+ Refer to [sea_bench/seallm_7b_v2.jsonl](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2/blob/main/evaluation/sea_bench/seallm_7b_v2.jsonl) for the Sea-bench predictions of SeaLLM-7B-v2.
197
+
198
+
199
+ ### Usage
200
+
201
+ #### Instruction format
202
+
203
+ ```python
204
+ prompt = """<|im_start|>system
205
+ You are a helpful assistant.</s><|im_start|>user
206
+ Hello world</s><|im_start|>assistant
207
+ Hi there, how can I help?</s>"""
208
+
209
+ # NOTE: previous commit has \n between </s> and <|im_start|>, that was incorrect!
210
+ # <|im_start|> is not a special token.
211
+ # Transformers chat_template should be consistent with vLLM format below.
212
+
213
+ # ! ENSURE 1 and only 1 bos `<s>` at the beginning of sequence
214
+ print(tokenizer.convert_ids_to_tokens(tokenizer.encode(prompt)))
215
+
216
+ '<s>', '▁<', '|', 'im', '_', 'start', '|', '>', 'system', '<0x0A>', 'You', '▁are', '▁a', '▁helpful', '▁assistant', '.', '</s>', '▁<', '|', 'im', '_', 'start', '|', '>', 'user', '<0x0A>', 'Hello', '▁world', '</s>', '▁<', '|', 'im', '_', 'start', '|', '>', 'ass', 'istant', '<0x0A>', 'Hi', '▁there', ',', '▁how', '▁can', '▁I', '▁help', '?', '</s>']
217
+ """
218
+ ```
219
+
220
+ #### Using transformers's chat_template
221
+ ```python
222
+
223
+ from transformers import AutoModelForCausalLM, AutoTokenizer
224
+
225
+ device = "cuda" # the device to load the model onto
226
+
227
+ # use bfloat16 to ensure the best performance.
228
+ model = AutoModelForCausalLM.from_pretrained("SeaLLMs/SeaLLM-7B-v2", torch_dtype=torch.bfloat16, device_map=device)
229
+ tokenizer = AutoTokenizer.from_pretrained("SeaLLMs/SeaLLM-7B-v2")
230
+
231
+ messages = [
232
+ {"role": "system", "content": "You are a helpful assistant."},
233
+ {"role": "user", "content": "Hello world"},
234
+ {"role": "assistant", "content": "Hi there, how can I help you today?"},
235
+ {"role": "user", "content": "Explain general relativity in details."}
236
+ ]
237
+
238
+ encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True)
239
+ print(tokenizer.convert_ids_to_tokens(encodeds[0]))
240
+ # ['<s>', '▁<', '|', 'im', '_', 'start', '|', '>', 'system', '<0x0A>', 'You', '▁are', '▁a', '▁helpful', '▁assistant', '.', '</s>', '▁<', '|', 'im', '_', 'start', '|', '>', 'user', '<0x0A>', 'Hello', '▁world', '</s>', '▁<', '|', 'im', '_', 'start', '|', '>', 'ass', 'istant', '<0x0A>', 'Hi', '▁there', ',', '▁how', '▁can', '▁I', '▁help', '▁you', '▁today', '?', '</s>', '▁<', '|', 'im', '_', 'start', '|', '>', 'user', '<0x0A>', 'Ex', 'plain', '▁general', '▁rel', 'ativity', '▁in', '▁details', '.', '</s>', '▁<', '|', 'im', '_', 'start', '|', '>', 'ass', 'istant', '<0x0A>']
241
+
242
+ model_inputs = encodeds.to(device)
243
+ model.to(device)
244
+
245
+ generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True, pad_token_id=tokenizer.pad_token_id)
246
+ decoded = tokenizer.batch_decode(generated_ids)
247
+ print(decoded[0])
248
+
249
+ ```
250
+
251
+ #### Using vLLM
252
+
253
+ ```python
254
+ from vllm import LLM, SamplingParams
255
+ TURN_TEMPLATE = "<|im_start|>{role}\n{content}</s>"
256
+ TURN_PREFIX = "<|im_start|>{role}\n"
257
+
258
+ # There is no \n between </s> and <|im_start|>.
259
+
260
+ def seallm_chat_convo_format(conversations, add_assistant_prefix: bool, system_prompt=None):
261
+ # conversations: list of dict with key `role` and `content` (openai format)
262
+ if conversations[0]['role'] != 'system' and system_prompt is not None:
263
+ conversations = [{"role": "system", "content": system_prompt}] + conversations
264
+ text = ''
265
+ for turn_id, turn in enumerate(conversations):
266
+ prompt = TURN_TEMPLATE.format(role=turn['role'], content=turn['content'])
267
+ text += prompt
268
+ if add_assistant_prefix:
269
+ prompt = TURN_PREFIX.format(role='assistant')
270
+ text += prompt
271
+ return text
272
+
273
+ sparams = SamplingParams(temperature=0.1, max_tokens=1024, stop=['</s>', '<|im_start|>'])
274
+ llm = LLM("SeaLLMs/SeaLLM-7B-v2", dtype="bfloat16")
275
+
276
+ message = "Explain general relativity in details."
277
+ prompt = seallm_chat_convo_format(message, True)
278
+ gen = llm.generate(prompt, sampling_params)
279
+
280
+ print(gen[0].outputs[0].text)
281
+ ```
282
+
283
+ #### Fine-tuning SeaLLM-7B-v2
284
+
285
+ Should follow the chat format and accurately mask out source tokens. Here is an example.
286
+
287
+ ```python
288
+ conversations = [
289
+ {"role": "system", "content": "You are helful assistant."},
290
+ {"role": "user", "content": "Hello world."},
291
+ {"role": "assistant", "content": "Hi there, how can I help?"},
292
+ {"role": "user", "content": "Tell me a joke."},
293
+ {"role": "assistant", "content": "Why don't scientists trust atoms? Because they make up everything."},
294
+ ]
295
+ def seallm_7b_v2_tokenize_multi_turns(tokenizer, conversations, add_assistant_prefix=False):
296
+ """
297
+ Inputs:
298
+ conversations: list of dict following openai format, eg
299
+ conversations = [
300
+ {"role": "system", "content": "You are helful assistant."},
301
+ {"role": "user", "content": "Hello world."},
302
+ {"role": "assistant", "content": "Hi there, how can I help?"},
303
+ {"role": "user", "content": "Tell me a joke."},
304
+ {"role": "assistant", "content": "Why don't scientists trust atoms? Because they make up everything."},
305
+ ]
306
+ add_assistant_prefix: whether to add assistant_prefix, only for inference decoding
307
+ Outputs:
308
+ tokenize_output_sample, {
309
+ "input_ids": ...
310
+ "token_type_ids": 1 if train and 0 if masked out (not train)
311
+ }
312
+ During training, need to create a labels, with masked-out tokens = -100 to avoid loss computations.
313
+ labels = sample['input_ids'].clone()
314
+ labels[sample['token_type_ids'] == 0] = -100
315
+ """
316
+ TURN_TEMPLATE = "<|im_start|>{role}\n{content}</s>"
317
+ TURN_PREFIX = "<|im_start|>{role}\n"
318
+ sample = None
319
+ assistant_prefix_len = None
320
+ for turn_id, turn in enumerate(conversations):
321
+ prompt = TURN_TEMPLATE.format(role=turn['role'], content=turn['content'])
322
+ turn_sample = tokenizer(
323
+ prompt, padding=False, truncation=False, verbose=False, add_special_tokens=False,
324
+ return_token_type_ids=True,
325
+ )
326
+ if turn['role'] == 'assistant':
327
+ if assistant_prefix_len is None:
328
+ assistant_prefix_len = len(tokenizer.encode(TURN_PREFIX.format(role=turn['role']), add_special_tokens=False))
329
+ turn_sample['token_type_ids'][assistant_prefix_len:] = [1] * (len(turn_sample['input_ids']) - assistant_prefix_len)
330
+ if sample is None:
331
+ sample = turn_sample
332
+ else:
333
+ for k in turn_sample.keys():
334
+ sample[k].extend(turn_sample[k])
335
+ if add_assistant_prefix:
336
+ assistant_prefix_sample = tokenizer(
337
+ TURN_PREFIX.format(role="assistant"), padding=False, truncation=False, verbose=False, add_special_tokens=False,
338
+ return_token_type_ids=True,
339
+ )
340
+ for k in sample.keys():
341
+ sample[k].extend(assistant_prefix_sample[k])
342
+ if tokenizer.add_bos_token:
343
+ sample['input_ids'] = [tokenizer.bos_token_id] + sample['input_ids']
344
+ sample['attention_mask'] = [1] + sample['attention_mask']
345
+ sample['token_type_ids'] = [sample['token_type_ids'][0]] + sample['token_type_ids']
346
+ return sample
347
+
348
+ # ! testing
349
+ sample = seallm_7b_v2_tokenize_multi_turns(tokenizer, conversations)
350
+ print(tokenizer.convert_ids_to_tokens(sample['input_ids']))
351
+ print(sample['token_type_ids'])
352
+ # ['<s>', '▁<', '|', 'im', '_', 'start', '|', '>', 'system', '<0x0A>', 'You', '▁are', '▁hel', 'ful', '▁assistant', '.', '</s>', '▁<', '|', 'im', '_', 'start', '|', '>', 'user', '<0x0A>', 'Hello', '▁world', '.', '</s>', '▁<', '|', 'im', '_', 'start', '|', '>', 'ass', 'istant', '<0x0A>', 'Hi', '▁there', ',', '▁how', '▁can', '▁I', '▁help', '?', '</s>', '▁<', '|', 'im', '_', 'start', '|', '>', 'user', '<0x0A>', 'Tell', '▁me', '▁a', '▁joke', '.', '</s>', '▁<', '|', 'im', '_', 'start', '|', '>', 'ass', 'istant', '<0x0A>', 'Why', '▁don', "'", 't', '▁scientists', '▁trust', '▁atoms', '?', '▁Because', '▁they', '▁make', '▁up', '▁everything', '.', '</s>']
353
+ # [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
354
+
355
+
356
+
357
+ ```
358
+
359
+
360
+ ## Acknowledgement to Our Linguists
361
+
362
+ We would like to express our special thanks to our professional and native linguists, Tantong Champaiboon, Nguyen Ngoc Yen Nhi and Tara Devina Putri, who helped build, evaluate, and fact-check our sampled pretraining and SFT dataset as well as evaluating our models across different aspects, especially safety.
363
+
364
+ ## Citation
365
+
366
+ If you find our project useful, we hope you would kindly star our repo and cite our work as follows: Corresponding Author: [[email protected]](mailto:[email protected])
367
+
368
+ **Author list and order will change!**
369
+
370
+ * `*` and `^` are equal contributions.
371
+
372
+ ```
373
+ @article{damonlpsg2023seallm,
374
+ author = {Xuan-Phi Nguyen*, Wenxuan Zhang*, Xin Li*, Mahani Aljunied*,
375
+ Zhiqiang Hu, Chenhui Shen^, Yew Ken Chia^, Xingxuan Li, Jianyu Wang,
376
+ Qingyu Tan, Liying Cheng, Guanzheng Chen, Yue Deng, Sen Yang,
377
+ Chaoqun Liu, Hang Zhang, Lidong Bing},
378
+ title = {SeaLLMs - Large Language Models for Southeast Asia},
379
+ year = 2023,
380
+ Eprint = {arXiv:2312.00738},
381
+ }
382
+ ```
383
+
384
+
385
+