RichardErkhov commited on
Commit
406a7d8
·
verified ·
1 Parent(s): d5aa8c3

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +181 -0
README.md ADDED
@@ -0,0 +1,181 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ zephyr-7b-beta_sparse05 - GGUF
11
+ - Model creator: https://huggingface.co/kettleguts/
12
+ - Original model: https://huggingface.co/kettleguts/zephyr-7b-beta_sparse05/
13
+
14
+
15
+ | Name | Quant method | Size |
16
+ | ---- | ---- | ---- |
17
+ | [zephyr-7b-beta_sparse05.Q2_K.gguf](https://huggingface.co/RichardErkhov/kettleguts_-_zephyr-7b-beta_sparse05-gguf/blob/main/zephyr-7b-beta_sparse05.Q2_K.gguf) | Q2_K | 2.53GB |
18
+ | [zephyr-7b-beta_sparse05.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/kettleguts_-_zephyr-7b-beta_sparse05-gguf/blob/main/zephyr-7b-beta_sparse05.IQ3_XS.gguf) | IQ3_XS | 2.81GB |
19
+ | [zephyr-7b-beta_sparse05.IQ3_S.gguf](https://huggingface.co/RichardErkhov/kettleguts_-_zephyr-7b-beta_sparse05-gguf/blob/main/zephyr-7b-beta_sparse05.IQ3_S.gguf) | IQ3_S | 2.96GB |
20
+ | [zephyr-7b-beta_sparse05.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/kettleguts_-_zephyr-7b-beta_sparse05-gguf/blob/main/zephyr-7b-beta_sparse05.Q3_K_S.gguf) | Q3_K_S | 2.95GB |
21
+ | [zephyr-7b-beta_sparse05.IQ3_M.gguf](https://huggingface.co/RichardErkhov/kettleguts_-_zephyr-7b-beta_sparse05-gguf/blob/main/zephyr-7b-beta_sparse05.IQ3_M.gguf) | IQ3_M | 3.06GB |
22
+ | [zephyr-7b-beta_sparse05.Q3_K.gguf](https://huggingface.co/RichardErkhov/kettleguts_-_zephyr-7b-beta_sparse05-gguf/blob/main/zephyr-7b-beta_sparse05.Q3_K.gguf) | Q3_K | 3.28GB |
23
+ | [zephyr-7b-beta_sparse05.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/kettleguts_-_zephyr-7b-beta_sparse05-gguf/blob/main/zephyr-7b-beta_sparse05.Q3_K_M.gguf) | Q3_K_M | 3.28GB |
24
+ | [zephyr-7b-beta_sparse05.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/kettleguts_-_zephyr-7b-beta_sparse05-gguf/blob/main/zephyr-7b-beta_sparse05.Q3_K_L.gguf) | Q3_K_L | 3.56GB |
25
+ | [zephyr-7b-beta_sparse05.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/kettleguts_-_zephyr-7b-beta_sparse05-gguf/blob/main/zephyr-7b-beta_sparse05.IQ4_XS.gguf) | IQ4_XS | 3.67GB |
26
+ | [zephyr-7b-beta_sparse05.Q4_0.gguf](https://huggingface.co/RichardErkhov/kettleguts_-_zephyr-7b-beta_sparse05-gguf/blob/main/zephyr-7b-beta_sparse05.Q4_0.gguf) | Q4_0 | 3.83GB |
27
+ | [zephyr-7b-beta_sparse05.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/kettleguts_-_zephyr-7b-beta_sparse05-gguf/blob/main/zephyr-7b-beta_sparse05.IQ4_NL.gguf) | IQ4_NL | 3.87GB |
28
+ | [zephyr-7b-beta_sparse05.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/kettleguts_-_zephyr-7b-beta_sparse05-gguf/blob/main/zephyr-7b-beta_sparse05.Q4_K_S.gguf) | Q4_K_S | 3.86GB |
29
+ | [zephyr-7b-beta_sparse05.Q4_K.gguf](https://huggingface.co/RichardErkhov/kettleguts_-_zephyr-7b-beta_sparse05-gguf/blob/main/zephyr-7b-beta_sparse05.Q4_K.gguf) | Q4_K | 4.07GB |
30
+ | [zephyr-7b-beta_sparse05.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/kettleguts_-_zephyr-7b-beta_sparse05-gguf/blob/main/zephyr-7b-beta_sparse05.Q4_K_M.gguf) | Q4_K_M | 4.07GB |
31
+ | [zephyr-7b-beta_sparse05.Q4_1.gguf](https://huggingface.co/RichardErkhov/kettleguts_-_zephyr-7b-beta_sparse05-gguf/blob/main/zephyr-7b-beta_sparse05.Q4_1.gguf) | Q4_1 | 4.24GB |
32
+ | [zephyr-7b-beta_sparse05.Q5_0.gguf](https://huggingface.co/RichardErkhov/kettleguts_-_zephyr-7b-beta_sparse05-gguf/blob/main/zephyr-7b-beta_sparse05.Q5_0.gguf) | Q5_0 | 4.65GB |
33
+ | [zephyr-7b-beta_sparse05.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/kettleguts_-_zephyr-7b-beta_sparse05-gguf/blob/main/zephyr-7b-beta_sparse05.Q5_K_S.gguf) | Q5_K_S | 4.65GB |
34
+ | [zephyr-7b-beta_sparse05.Q5_K.gguf](https://huggingface.co/RichardErkhov/kettleguts_-_zephyr-7b-beta_sparse05-gguf/blob/main/zephyr-7b-beta_sparse05.Q5_K.gguf) | Q5_K | 4.78GB |
35
+ | [zephyr-7b-beta_sparse05.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/kettleguts_-_zephyr-7b-beta_sparse05-gguf/blob/main/zephyr-7b-beta_sparse05.Q5_K_M.gguf) | Q5_K_M | 4.78GB |
36
+ | [zephyr-7b-beta_sparse05.Q5_1.gguf](https://huggingface.co/RichardErkhov/kettleguts_-_zephyr-7b-beta_sparse05-gguf/blob/main/zephyr-7b-beta_sparse05.Q5_1.gguf) | Q5_1 | 5.07GB |
37
+ | [zephyr-7b-beta_sparse05.Q6_K.gguf](https://huggingface.co/RichardErkhov/kettleguts_-_zephyr-7b-beta_sparse05-gguf/blob/main/zephyr-7b-beta_sparse05.Q6_K.gguf) | Q6_K | 5.53GB |
38
+ | [zephyr-7b-beta_sparse05.Q8_0.gguf](https://huggingface.co/RichardErkhov/kettleguts_-_zephyr-7b-beta_sparse05-gguf/blob/main/zephyr-7b-beta_sparse05.Q8_0.gguf) | Q8_0 | 7.17GB |
39
+
40
+
41
+
42
+
43
+ Original model description:
44
+ ---
45
+ library_name: transformers
46
+ tags:
47
+ - mistral
48
+ - sparse
49
+ - pruned
50
+ - wanda
51
+ license: mit
52
+ datasets:
53
+ - HuggingFaceH4/ultrachat_200k
54
+ - HuggingFaceH4/ultrafeedback_binarized
55
+ language:
56
+ - en
57
+ ---
58
+
59
+ # Model Card for kettleguts/zephyr-7b-beta_sparse05
60
+
61
+
62
+ This is a pruned version of HuggingFaceH4/zephyr-7b-beta found [here](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta). Wanda pruning was used to introduce 50% sparsity into the linear layers. Read the paper [here](https://arxiv.org/abs/2306.11695).
63
+
64
+
65
+
66
+ ### Model Description
67
+ [Here](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta#model-description)
68
+
69
+
70
+
71
+ ## Uses
72
+ This model is only useful for research purposes. The quality of its text generation is highly dependent on how it is prompted. Since it is heavily pruned, it sometimes behaves like a mush smaller model.
73
+
74
+ ### Direct Use
75
+
76
+ This model is not suitable for direct use outside of research.
77
+
78
+
79
+ # Out-of-Scope Use
80
+
81
+ This model should never be used for critical decisions involving health, life, employment, housing, law, etc. It should also never be used to harm anyone.
82
+
83
+
84
+
85
+
86
+ ## Bias, Risks, and Limitations
87
+
88
+ [No safegaurds have been added to this model.](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta#bias-risks-and-limitations)
89
+
90
+ ## How to Get Started with the Model
91
+
92
+ Use the code below to get started with the model:
93
+
94
+ <blockquote>
95
+
96
+ ```Python
97
+
98
+ from transformers import pipeline
99
+
100
+ pipe = pipeline("text-generation",model=model, tokenizer=tokenizer)
101
+
102
+ messages = [
103
+ {
104
+ "role": "system",
105
+ "content": "You are a friendly chatbot who always responds as briefly as possible with prefect grammar.",
106
+ },
107
+ {"role": "user", "content": "Briefly describe network pruning."},
108
+ ]
109
+
110
+ prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
111
+
112
+ outputs = pipe(prompt,
113
+ max_new_tokens=256,
114
+ do_sample=True,
115
+ temperature=0.7,
116
+ top_k=50,
117
+ top_p=0.95,
118
+ pad_token_id = tokenizer.pad_token_id)
119
+
120
+ text = str(outputs[0]).split('<|assistant|>\\n')
121
+ print(text[-1])
122
+
123
+ ```
124
+
125
+ </blockquote>
126
+
127
+ Output:
128
+ >Network pruning, in the context of artificial intelligence and machine learning, refers to the process of removing unimportant or redundant connections, or "pruning," from a neural network\'s architecture. This is done to simplify and optimize the network\'s structure, reduce overfitting, and improve its efficiency, while preserving its overall performance. Pruning typically involves removing connections, neurons, or entire layers, based on metrics such as the weight or sparsity of the connection, or the amount of improvement gained by removing the connection. The goal is to prune the network in a way that balances the trade-off between model size and accuracy, while reducing the network\'s overall complexity and resource requirements. Pruning techniques can range from simple heuristics such as early stopping, to more sophisticated methods such as compressed and pruned models, and iterative and incremental pruning.'}
129
+
130
+ ## Evaluation
131
+
132
+ Pending
133
+
134
+
135
+ ## Model Examination
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+ Pending
139
+
140
+ ## Environmental Impact
141
+
142
+ The calculations necessary to prune this model required less than 1 hour of time on a T4 GPU in Colab.
143
+
144
+ ## Technical Specifications
145
+
146
+
147
+ #### Software
148
+
149
+ The bulk of this work was done using [Pytorch](https://pytorch.org/). They have an array of built-in [pruning tools](https://pytorch.org/docs/stable/nn.html#:~:text=Utility%20classes%20and%20functions%20for%20pruning%20Module%20parameters
150
+ ) in torch.nn . Also check out the [tutorial](https://pytorch.org/tutorials/intermediate/pruning_tutorial.html) by [Michela Paganini](https://github.com/mickypaganini).
151
+
152
+ ## Citation
153
+
154
+ **BibTeX:**
155
+ <code>
156
+
157
+ >@misc{tunstall2023zephyr,
158
+ title={Zephyr: Direct Distillation of LM Alignment},
159
+ author={Lewis Tunstall and Edward Beeching and Nathan Lambert and Nazneen Rajani and Kashif Rasul and Younes Belkada and Shengyi Huang and Leandro von Werra and Clémentine Fourrier and Nathan Habib and Nathan Sarrazin and Omar Sanseviero and Alexander M. Rush and Thomas Wolf},
160
+ year={2023},
161
+ eprint={2310.16944},
162
+ archivePrefix={arXiv},
163
+ primaryClass={cs.LG}
164
+ }
165
+
166
+
167
+ >@misc{sun2023simple,
168
+ title={A Simple and Effective Pruning Approach for Large Language Models},
169
+ author={Mingjie Sun and Zhuang Liu and Anna Bair and J. Zico Kolter},
170
+ year={2023},
171
+ eprint={2306.11695},
172
+ archivePrefix={arXiv},
173
+ primaryClass={cs.CL}
174
+ }
175
+
176
+ </code>
177
+
178
+
179
+
180
+
181
+