Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) tabula-8b - GGUF - Model creator: https://huggingface.co/mlfoundations/ - Original model: https://huggingface.co/mlfoundations/tabula-8b/ | Name | Quant method | Size | | ---- | ---- | ---- | | [tabula-8b.Q2_K.gguf](https://huggingface.co/RichardErkhov/mlfoundations_-_tabula-8b-gguf/blob/main/tabula-8b.Q2_K.gguf) | Q2_K | 2.96GB | | [tabula-8b.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/mlfoundations_-_tabula-8b-gguf/blob/main/tabula-8b.IQ3_XS.gguf) | IQ3_XS | 3.28GB | | [tabula-8b.IQ3_S.gguf](https://huggingface.co/RichardErkhov/mlfoundations_-_tabula-8b-gguf/blob/main/tabula-8b.IQ3_S.gguf) | IQ3_S | 3.43GB | | [tabula-8b.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/mlfoundations_-_tabula-8b-gguf/blob/main/tabula-8b.Q3_K_S.gguf) | Q3_K_S | 3.41GB | | [tabula-8b.IQ3_M.gguf](https://huggingface.co/RichardErkhov/mlfoundations_-_tabula-8b-gguf/blob/main/tabula-8b.IQ3_M.gguf) | IQ3_M | 3.52GB | | [tabula-8b.Q3_K.gguf](https://huggingface.co/RichardErkhov/mlfoundations_-_tabula-8b-gguf/blob/main/tabula-8b.Q3_K.gguf) | Q3_K | 3.74GB | | [tabula-8b.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/mlfoundations_-_tabula-8b-gguf/blob/main/tabula-8b.Q3_K_M.gguf) | Q3_K_M | 3.74GB | | [tabula-8b.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/mlfoundations_-_tabula-8b-gguf/blob/main/tabula-8b.Q3_K_L.gguf) | Q3_K_L | 4.03GB | | [tabula-8b.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/mlfoundations_-_tabula-8b-gguf/blob/main/tabula-8b.IQ4_XS.gguf) | IQ4_XS | 4.18GB | | [tabula-8b.Q4_0.gguf](https://huggingface.co/RichardErkhov/mlfoundations_-_tabula-8b-gguf/blob/main/tabula-8b.Q4_0.gguf) | Q4_0 | 4.34GB | | [tabula-8b.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/mlfoundations_-_tabula-8b-gguf/blob/main/tabula-8b.IQ4_NL.gguf) | IQ4_NL | 4.38GB | | [tabula-8b.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/mlfoundations_-_tabula-8b-gguf/blob/main/tabula-8b.Q4_K_S.gguf) | Q4_K_S | 4.37GB | | [tabula-8b.Q4_K.gguf](https://huggingface.co/RichardErkhov/mlfoundations_-_tabula-8b-gguf/blob/main/tabula-8b.Q4_K.gguf) | Q4_K | 4.58GB | | [tabula-8b.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/mlfoundations_-_tabula-8b-gguf/blob/main/tabula-8b.Q4_K_M.gguf) | Q4_K_M | 4.58GB | | [tabula-8b.Q4_1.gguf](https://huggingface.co/RichardErkhov/mlfoundations_-_tabula-8b-gguf/blob/main/tabula-8b.Q4_1.gguf) | Q4_1 | 4.78GB | | [tabula-8b.Q5_0.gguf](https://huggingface.co/RichardErkhov/mlfoundations_-_tabula-8b-gguf/blob/main/tabula-8b.Q5_0.gguf) | Q5_0 | 5.21GB | | [tabula-8b.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/mlfoundations_-_tabula-8b-gguf/blob/main/tabula-8b.Q5_K_S.gguf) | Q5_K_S | 5.21GB | | [tabula-8b.Q5_K.gguf](https://huggingface.co/RichardErkhov/mlfoundations_-_tabula-8b-gguf/blob/main/tabula-8b.Q5_K.gguf) | Q5_K | 5.34GB | | [tabula-8b.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/mlfoundations_-_tabula-8b-gguf/blob/main/tabula-8b.Q5_K_M.gguf) | Q5_K_M | 5.34GB | | [tabula-8b.Q5_1.gguf](https://huggingface.co/RichardErkhov/mlfoundations_-_tabula-8b-gguf/blob/main/tabula-8b.Q5_1.gguf) | Q5_1 | 5.65GB | | [tabula-8b.Q6_K.gguf](https://huggingface.co/RichardErkhov/mlfoundations_-_tabula-8b-gguf/blob/main/tabula-8b.Q6_K.gguf) | Q6_K | 6.14GB | | [tabula-8b.Q8_0.gguf](https://huggingface.co/RichardErkhov/mlfoundations_-_tabula-8b-gguf/blob/main/tabula-8b.Q8_0.gguf) | Q8_0 | 7.95GB | Original model description: --- license: llama3 datasets: - jpgard/t4-full language: - en --- This repository contains the TabuLa-8B (Tabular Llama-8B) model. TabuLa-8B is a foundation model for prediction (classification and binned regression) on tabular data. TabuLa-8B is described in the paper ["Large Scale Transfer Learning for Tabular Data via Language Modeling."](https://arxiv.org/abs/2406.12031) For more details on the model, see the paper, which includes a Model Card detailing the model architecture, training, and evaluation. TabuLa-8B was trained with [rtfm](https://github.com/mlfoundations/rtfm), using the [T4 dataset](https://huggingface.co/datasets/mlfoundations/t4-full). TabuLa-8B is built with Meta Llama 3. # Usage and Examples You can load the model with `transformers` via ``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("mlfoundations/tabula-8b") model = AutoModelForCausalLM.from_pretrained("mlfoundations/tabula-8b") ``` For more information on how to prepare data and run inference (including a demo notebook for performing inference on your data), see the examples in [rtfm](https://github.com/mlfoundations/rtfm). # License and Terms of Use TabuLa-8B is fine-tuned from the Llama-3 8B model. As a result, we release it under the [Llama 3 license](https://llama.meta.com/llama3/license/), and by using the model you agree to abide by the [Llama 3 Community License Agreement](https://llama.meta.com/llama3/license/) and the Llama 3 [Acceptable Use Policy](https://llama.meta.com/llama3/use-policy/).