RichardErkhov commited on
Commit
794dc60
·
verified ·
1 Parent(s): b4c9b70

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +160 -0
README.md ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ nekomata-14b-pfn-qfin - GGUF
11
+ - Model creator: https://huggingface.co/pfnet/
12
+ - Original model: https://huggingface.co/pfnet/nekomata-14b-pfn-qfin/
13
+
14
+
15
+ | Name | Quant method | Size |
16
+ | ---- | ---- | ---- |
17
+ | [nekomata-14b-pfn-qfin.Q2_K.gguf](https://huggingface.co/RichardErkhov/pfnet_-_nekomata-14b-pfn-qfin-gguf/blob/main/nekomata-14b-pfn-qfin.Q2_K.gguf) | Q2_K | 5.41GB |
18
+ | [nekomata-14b-pfn-qfin.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/pfnet_-_nekomata-14b-pfn-qfin-gguf/blob/main/nekomata-14b-pfn-qfin.IQ3_XS.gguf) | IQ3_XS | 6.12GB |
19
+ | [nekomata-14b-pfn-qfin.IQ3_S.gguf](https://huggingface.co/RichardErkhov/pfnet_-_nekomata-14b-pfn-qfin-gguf/blob/main/nekomata-14b-pfn-qfin.IQ3_S.gguf) | IQ3_S | 6.31GB |
20
+ | [nekomata-14b-pfn-qfin.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/pfnet_-_nekomata-14b-pfn-qfin-gguf/blob/main/nekomata-14b-pfn-qfin.Q3_K_S.gguf) | Q3_K_S | 6.31GB |
21
+ | [nekomata-14b-pfn-qfin.IQ3_M.gguf](https://huggingface.co/RichardErkhov/pfnet_-_nekomata-14b-pfn-qfin-gguf/blob/main/nekomata-14b-pfn-qfin.IQ3_M.gguf) | IQ3_M | 6.87GB |
22
+ | [nekomata-14b-pfn-qfin.Q3_K.gguf](https://huggingface.co/RichardErkhov/pfnet_-_nekomata-14b-pfn-qfin-gguf/blob/main/nekomata-14b-pfn-qfin.Q3_K.gguf) | Q3_K | 7.16GB |
23
+ | [nekomata-14b-pfn-qfin.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/pfnet_-_nekomata-14b-pfn-qfin-gguf/blob/main/nekomata-14b-pfn-qfin.Q3_K_M.gguf) | Q3_K_M | 7.16GB |
24
+ | [nekomata-14b-pfn-qfin.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/pfnet_-_nekomata-14b-pfn-qfin-gguf/blob/main/nekomata-14b-pfn-qfin.Q3_K_L.gguf) | Q3_K_L | 7.44GB |
25
+ | [nekomata-14b-pfn-qfin.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/pfnet_-_nekomata-14b-pfn-qfin-gguf/blob/main/nekomata-14b-pfn-qfin.IQ4_XS.gguf) | IQ4_XS | 7.37GB |
26
+ | [nekomata-14b-pfn-qfin.Q4_0.gguf](https://huggingface.co/RichardErkhov/pfnet_-_nekomata-14b-pfn-qfin-gguf/blob/main/nekomata-14b-pfn-qfin.Q4_0.gguf) | Q4_0 | 7.62GB |
27
+ | [nekomata-14b-pfn-qfin.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/pfnet_-_nekomata-14b-pfn-qfin-gguf/blob/main/nekomata-14b-pfn-qfin.IQ4_NL.gguf) | IQ4_NL | 7.68GB |
28
+ | [nekomata-14b-pfn-qfin.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/pfnet_-_nekomata-14b-pfn-qfin-gguf/blob/main/nekomata-14b-pfn-qfin.Q4_K_S.gguf) | Q4_K_S | 7.96GB |
29
+ | [nekomata-14b-pfn-qfin.Q4_K.gguf](https://huggingface.co/RichardErkhov/pfnet_-_nekomata-14b-pfn-qfin-gguf/blob/main/nekomata-14b-pfn-qfin.Q4_K.gguf) | Q4_K | 8.8GB |
30
+ | [nekomata-14b-pfn-qfin.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/pfnet_-_nekomata-14b-pfn-qfin-gguf/blob/main/nekomata-14b-pfn-qfin.Q4_K_M.gguf) | Q4_K_M | 8.8GB |
31
+ | [nekomata-14b-pfn-qfin.Q4_1.gguf](https://huggingface.co/RichardErkhov/pfnet_-_nekomata-14b-pfn-qfin-gguf/blob/main/nekomata-14b-pfn-qfin.Q4_1.gguf) | Q4_1 | 8.4GB |
32
+ | [nekomata-14b-pfn-qfin.Q5_0.gguf](https://huggingface.co/RichardErkhov/pfnet_-_nekomata-14b-pfn-qfin-gguf/blob/main/nekomata-14b-pfn-qfin.Q5_0.gguf) | Q5_0 | 9.18GB |
33
+ | [nekomata-14b-pfn-qfin.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/pfnet_-_nekomata-14b-pfn-qfin-gguf/blob/main/nekomata-14b-pfn-qfin.Q5_K_S.gguf) | Q5_K_S | 9.34GB |
34
+ | [nekomata-14b-pfn-qfin.Q5_K.gguf](https://huggingface.co/RichardErkhov/pfnet_-_nekomata-14b-pfn-qfin-gguf/blob/main/nekomata-14b-pfn-qfin.Q5_K.gguf) | Q5_K | 10.14GB |
35
+ | [nekomata-14b-pfn-qfin.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/pfnet_-_nekomata-14b-pfn-qfin-gguf/blob/main/nekomata-14b-pfn-qfin.Q5_K_M.gguf) | Q5_K_M | 10.14GB |
36
+ | [nekomata-14b-pfn-qfin.Q5_1.gguf](https://huggingface.co/RichardErkhov/pfnet_-_nekomata-14b-pfn-qfin-gguf/blob/main/nekomata-14b-pfn-qfin.Q5_1.gguf) | Q5_1 | 9.96GB |
37
+ | [nekomata-14b-pfn-qfin.Q6_K.gguf](https://huggingface.co/RichardErkhov/pfnet_-_nekomata-14b-pfn-qfin-gguf/blob/main/nekomata-14b-pfn-qfin.Q6_K.gguf) | Q6_K | 11.46GB |
38
+ | [nekomata-14b-pfn-qfin.Q8_0.gguf](https://huggingface.co/RichardErkhov/pfnet_-_nekomata-14b-pfn-qfin-gguf/blob/main/nekomata-14b-pfn-qfin.Q8_0.gguf) | Q8_0 | 14.03GB |
39
+
40
+
41
+
42
+
43
+ Original model description:
44
+ ---
45
+ license: other
46
+ license_name: tongyi-qianwen-license
47
+ license_link: LICENSE
48
+ language:
49
+ - en
50
+ - ja
51
+ library_name: transformers
52
+ pipeline_tag: text-generation
53
+ ---
54
+
55
+ # nekomata-14b-pfn-qfin
56
+
57
+ ## Model Description
58
+ nekomata-14b-pfn-qfin is a fine-tuned model based on [rinna/nekomata-14b](https://huggingface.co/rinna/nekomata-14b/tree/main).
59
+ This is the base model, which is good at generating continuous sentences for finance.
60
+ nekomata-14b-pfn-qfin is fine-tuned on 370M tokens from multiple special datasets generated by Preferred Networks, which is clear to use for commercial usage.
61
+ The fine-tuned were carried out at a 2048 context length.
62
+ This model is released under [Tongyi Qianwen LICENSE AGREEMENT](https://github.com/QwenLM/Qwen/blob/e8e15962d897714944773cca57fa2e460a3655e8/Tongyi%20Qianwen%20LICENSE%20AGREEMENT).
63
+
64
+ The research article is available on [arXiv](https://arxiv.org/abs/2404.10555).
65
+
66
+ # Benchmarking
67
+ The benchmark score is obtained using [Japanese Language Model Financial Evaluation Harness](https://github.com/pfnet-research/japanese-lm-fin-harness)
68
+ For the benchmark, 0-shot and default prompts are used.
69
+ ```
70
+ | Task |Metric| nekomaba-14b | Ours |
71
+ |----------------|------|------|---|------|------|---|------|
72
+ |chabsa |f1 |0.7381| | |0.7428| | |
73
+ |cma_basics |acc |0.4737|± |0.0821|0.5263|± |0.0821|
74
+ |cpa_audit |acc |0.1608|± |0.0184|0.1633|± |0.0186|
75
+ |fp2 |acc |0.3389|± |0.0217|0.3642|± |0.0221|
76
+ |security_sales_1|acc |0.4561|± |0.0666|0.5614|± |0.0663|
77
+ |----------------|------|------|---|------|------|---|------|
78
+ |OVER ALL | |0.4335 |0.4716 |
79
+ ```
80
+ ## Usage
81
+ Install the required libraries as follows:
82
+ ```sh
83
+ >>> python -m pip install numpy sentencepiece torch transformers accelerate transformers_stream_generator tiktoken einops
84
+ ```
85
+
86
+ Execute the following python code:
87
+ ```python
88
+ import torch
89
+ from transformers import AutoTokenizer, AutoModelForCausalLM
90
+
91
+ tokenizer = AutoTokenizer.from_pretrained("pfnet/nekomata-14b-pfn-qfin", trust_remote_code=True)
92
+
93
+ # Use GPU with bf16 (recommended for supported devices)
94
+ # model = AutoModelForCausalLM.from_pretrained("pfnet/nekomata-14b-pfn-qfin", device_map="auto", trust_remote_code=True, bf16=True)
95
+
96
+ # Use GPU with fp16
97
+ # model = AutoModelForCausalLM.from_pretrained("pfnet/nekomata-14b-pfn-qfin", device_map="auto", trust_remote_code=True, fp16=True)
98
+
99
+ # Use GPU with fp32
100
+ # model = AutoModelForCausalLM.from_pretrained("pfnet/nekomata-14b-pfn-qfin", device_map="auto", trust_remote_code=True, fp32=True)
101
+
102
+ # Use CPU
103
+ # model = AutoModelForCausalLM.from_pretrained("pfnet/nekomata-14b-pfn-qfin", device_map="cpu", trust_remote_code=True)
104
+
105
+ # Automatically select device and precision
106
+ model = AutoModelForCausalLM.from_pretrained("pfnet/nekomata-14b-pfn-qfin", device_map="auto", trust_remote_code=True)
107
+
108
+ text = "日本銀行は"
109
+ input_ids = tokenizer(text, return_tensors="pt").input_ids.to(model.device)
110
+ with torch.no_grad():
111
+ generated_tokens = model.generate(
112
+ inputs=input_ids,
113
+ max_new_tokens=32,
114
+ do_sample=True,
115
+ temperature=1.0,
116
+ repetition_penalty=1.1
117
+ )[0]
118
+ generated_text = tokenizer.decode(generated_tokens)
119
+ print(generated_text)
120
+ # 日本銀行は、2016年9月に「長短金利操作付き量的・質的金融緩和」を導入し、長期国
121
+ ```
122
+
123
+ ## Model Details
124
+ - Model size: 14B
125
+ - Fine-tuned tokens: 370M tokens (Japanese: 300M tokens, English: 13M tokens, Digits: 14M tokens)
126
+ - Context length: 2048
127
+ - Developed by: Preferred Networks, Inc
128
+ - Model type: Causal decoder-only
129
+ - Language(s): Japanese and English
130
+ - License: [Tongyi Qianwen LICENSE AGREEMENT](https://github.com/QwenLM/Qwen/blob/e8e15962d897714944773cca57fa2e460a3655e8/Tongyi%20Qianwen%20LICENSE%20AGREEMENT)
131
+
132
+ ## Bias, Risks, and Limitations
133
+ nekomata-14b-pfn-qfin is a new technology that carries risks with use.
134
+ Testing conducted to date has been in English and Japanese, and has not covered, nor could it cover all scenarios.
135
+ For these reasons, as with all LLMs, nekomata-14b-pfn-qfin’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts.
136
+ This model is not designed for legal, tax, investment, financial, or other advice.
137
+ Therefore, before deploying any applications of nekomata-14b-pfn-qfin, developers should perform safety testing and tuning tailored to their specific applications of the model.
138
+
139
+ ## How to cite
140
+ ```
141
+ @misc{hirano2024,
142
+ title={Construction of Domain-specified Japanese Large Language Model for Finance through Continual Pre-training},
143
+ author={Masanori Hirano and Kentaro Imajo},
144
+ year={2024},
145
+ eprint={2404.10555},
146
+ archivePrefix={arXiv},
147
+ primaryClass={cs.CL}
148
+ }
149
+ ```
150
+
151
+ ## Contributors
152
+ Preferred Networks, Inc.
153
+ - Masanori Hirano
154
+ - Kentaro Imajo
155
+
156
+ # License
157
+ [Tongyi Qianwen LICENSE AGREEMENT](https://github.com/QwenLM/Qwen/blob/e8e15962d897714944773cca57fa2e460a3655e8/Tongyi%20Qianwen%20LICENSE%20AGREEMENT)
158
+
159
+
160
+