Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) bilingual-gpt-neox-4b-instruction-ppo - bnb 4bits - Model creator: https://huggingface.co/rinna/ - Original model: https://huggingface.co/rinna/bilingual-gpt-neox-4b-instruction-ppo/ Original model description: --- thumbnail: https://github.com/rinnakk/japanese-pretrained-models/blob/master/rinna.png license: mit datasets: - Anthropic/hh-rlhf language: - ja - en inference: false base_model: rinna/bilingual-gpt-neox-4b --- # bilingual-gpt-neox-4b-instruction-ppo ![rinna-icon](./rinna.png) --- # Overview This repository provides an English-Japanese bilingual GPT-NeoX model of 3.8 billion parameters. The model is based on [`rinna/bilingual-gpt-neox-4b-instruction-sft`](https://huggingface.co/rinna/bilingual-gpt-neox-4b-instruction-sft) and has been aligned to serve as an instruction-following conversational agent. * **Model architecture** A 36-layer, 2816-hidden-size transformer-based language model. * **RLHF** Following the [OpenAI InstructGPT paper](https://arxiv.org/abs/2203.02155), **Reinforcement Learning from Human Feedback** (RLHF) has been applied to aligning the model's behaviour with input instructions. Particularly, the model has been trained in two stages, i.e. **Supervised Fine-Tuning** (SFT) and [PPO](https://arxiv.org/abs/1707.06347)-based **Reinforcement Learning** (RL). * The first SFT stage produces [`rinna/bilingual-gpt-neox-4b-instruction-sft`](https://huggingface.co/rinna/bilingual-gpt-neox-4b-instruction-sft). * The second RL stage produces this model. * **Reinforcement learning** We used [CarperAI/trlx](https://github.com/CarperAI/trlx) and its implementation of the PPO algorithm for the RL stage. The RL data is the subset of the following dataset and has been translated into Japanese. * [Anthropic HH RLHF data](https://huggingface.co/datasets/Anthropic/hh-rlhf) * **Model Series** | Variant | Link | | :-- | :--| | Bilingual 4B MiniGPT4 | https://huggingface.co/rinna/bilingual-gpt-neox-4b-minigpt4 | | Bilingual 4B PPO | https://huggingface.co/rinna/bilingual-gpt-neox-4b-instruction-ppo | | Bilingual 4B SFT | https://huggingface.co/rinna/bilingual-gpt-neox-4b-instruction-sft | | Bilingual 4B 8K | https://huggingface.co/rinna/bilingual-gpt-neox-4b-8k | | Bilingual 4B | https://huggingface.co/rinna/bilingual-gpt-neox-4b | | Japanese 3.6B PPO | https://huggingface.co/rinna/japanese-gpt-neox-3.6b-instruction-ppo | | Japanese 3.6B SFT-v2 | https://huggingface.co/rinna/japanese-gpt-neox-3.6b-instruction-sft-v2 | | Japanese 3.6B SFT | https://huggingface.co/rinna/japanese-gpt-neox-3.6b-instruction-sft | | Japanese 3.6B | https://huggingface.co/rinna/japanese-gpt-neox-3.6b | * **Contributors** [Tianyu Zhao](https://huggingface.co/tianyuz) and [Kei Sawada](https://huggingface.co/keisawada) --- # Benchmarking Our evaluation experiments suggest that the PPO does not particularly improve the model's performance on the Japanese LLM benchmark in comparison with [Bilingual GPT-NeoX 4B SFT](https://huggingface.co/rinna/bilingual-gpt-neox-4b-instruction-sft), but we have seen **better conversation experience** on the PPO model than its SFT counterpart. - *The 4-task average accuracy is based on results of JCommonsenseQA, JNLI, MARC-ja, and JSQuAD.* - *The 6-task average accuracy is based on results of JCommonsenseQA, JNLI, MARC-ja, JSQuAD, XWinograd, and JAQKET-v2.* | Model | 4-task average accuracy | 6-task average accuracy | | :-- | :-- | :-- | | **bilingual-gpt-neox-4b-instruction-ppo** | **61.01** | **61.16** | | bilingual-gpt-neox-4b-instruction-sft | 61.02 | 61.69 | | bilingual-gpt-neox-4b | 56.12 | 51.83 | | japanese-gpt-neox-3.6b-instruction-ppo | 59.86 | 60.07 | | japanese-gpt-neox-3.6b | 55.07 | 50.32 | --- # I/O Format A special format has been adopted to construct inputs. * An input prompt is formatted as a conversation between `ユーザー` and `システム`. * Each input utterance consists of (1) its speaker (`"ユーザー"` or `"システム"`), (2) a colon (`":"`), (3) a whitespace (`" "`), and (4) utterance text (e.g. `"世界で一番高い山は?"`). * The input prompt should be ended with `"システム: "` to acknowledge the model to generate a response. * All the utterances in the input prompt should be separated by a newline `\n`. Following is an example to construct input from a conversation. ~~~python prompt = [ { "speaker": "ユーザー", "text": "Hello, you are an assistant that helps me learn Japanese." }, { "speaker": "システム", "text": "Sure, what can I do for you?" }, { "speaker": "ユーザー", "text": "VRはなんですか。" } ] prompt = [ f"{uttr['speaker']}: {uttr['text']}" for uttr in prompt ] prompt = "\n".join(prompt) prompt = ( prompt + "\n" + "システム: " ) print(prompt) """ ユーザー: Hello, you are an assistant that helps me learn Japanese. システム: Sure, what can I do for you? ユーザー: VRはなんですか。 システム: """ ~~~ --- # How to use the model **Notice:** Since the model is **sensitive to decoding hyper-parameters** (e.g. `temperature`, `top_p`, `top_k`, `repetition_penalty`), it is suggested to explore the best setting for your task. ~~~~python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("rinna/bilingual-gpt-neox-4b-instruction-ppo", use_fast=False) model = AutoModelForCausalLM.from_pretrained("rinna/bilingual-gpt-neox-4b-instruction-ppo") if torch.cuda.is_available(): model = model.to("cuda") token_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") with torch.no_grad(): output_ids = model.generate( token_ids.to(model.device), max_new_tokens=512, do_sample=True, temperature=1.0, top_p=0.85, pad_token_id=tokenizer.pad_token_id, bos_token_id=tokenizer.bos_token_id, eos_token_id=tokenizer.eos_token_id ) output = tokenizer.decode(output_ids.tolist()[0][token_ids.size(1):]) print(output) """VRとはVirtual Realityの略で、仮想現実とも呼ばれます。これは、コンピューターを使用して仮想世界を作り出し、仮想世界上でコンピューターのゲームや仮想世界を体験するための技術です。この技術は、コンピューターやモバイ ルデバイスの進歩によって、2015年以降、ますます普及しています。VRは、ゲームや仮想世界、その他のアプリケー ションなどのさまざまな分野で、コンピューターと人間の相互作用の新しい方法を提供しています。""" ~~~~ --- # Tokenization The model uses a [sentencepiece](https://github.com/google/sentencepiece)-based tokenizer. * The tokenizer has a vocabulary size of 65,536. * It uses *byte fallback* to decompose unknown text pieces into UTF-8 byte pieces to avoid producing `` tokens. * It can recognize *consecutive whitespaces*, *newlines*, and *tabs* to handle structured texts better. * We turned off the default behaviour of prepending leading whitespace because it is not beneficial for processing Japanese. * Specifically, single whitespace is always processed as one token so that any English word won't have a preceding whitespace like in many other tokenizers (e.g. `_Hello`). * This decision trades the English processing efficiency for a unified way to treat whitespaces. * It leads to a significantly lower loss of next token prediction on English data because whitespaces are easy to predict. * **Don't forget to set `use_fast=False` to make the above features function correctly.** --- # How to cite ```bibtex @misc{rinna-bilingual-gpt-neox-4b-instruction-ppo, title = {rinna/bilingual-gpt-neox-4b-instruction-ppo}, author = {Zhao, Tianyu and Sawada, Kei}, url = {https://huggingface.co/rinna/bilingual-gpt-neox-4b-instruction-ppo} } @inproceedings{sawada2024release, title = {Release of Pre-Trained Models for the {J}apanese Language}, author = {Sawada, Kei and Zhao, Tianyu and Shing, Makoto and Mitsui, Kentaro and Kaga, Akio and Hono, Yukiya and Wakatsuki, Toshiaki and Mitsuda, Koh}, booktitle = {Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)}, month = {5}, year = {2024}, pages = {13898--13905}, url = {https://aclanthology.org/2024.lrec-main.1213}, note = {\url{https://arxiv.org/abs/2404.01657}} } ``` --- # Licenese [The MIT license](https://opensource.org/licenses/MIT)