RichardErkhov commited on
Commit
4041590
1 Parent(s): 5756396

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +107 -0
README.md ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ japanese-gpt-1b - bnb 8bits
11
+ - Model creator: https://huggingface.co/rinna/
12
+ - Original model: https://huggingface.co/rinna/japanese-gpt-1b/
13
+
14
+
15
+
16
+
17
+ Original model description:
18
+ ---
19
+ language: ja
20
+ thumbnail: https://github.com/rinnakk/japanese-pretrained-models/blob/master/rinna.png
21
+ tags:
22
+ - gpt
23
+ - text-generation
24
+ - lm
25
+ - nlp
26
+ license: mit
27
+ datasets:
28
+ - cc100
29
+ - wikipedia
30
+ - c4
31
+ widget:
32
+ - text: "西田幾多郎は、"
33
+ ---
34
+
35
+ # japanese-gpt-1b
36
+
37
+ ![rinna-icon](./rinna.png)
38
+
39
+ This repository provides a 1.3B-parameter Japanese GPT model. The model was trained by [rinna Co., Ltd.](https://corp.rinna.co.jp/)
40
+
41
+ # How to use the model
42
+
43
+ ~~~~
44
+ import torch
45
+ from transformers import AutoTokenizer, AutoModelForCausalLM
46
+
47
+ tokenizer = AutoTokenizer.from_pretrained("rinna/japanese-gpt-1b", use_fast=False)
48
+ model = AutoModelForCausalLM.from_pretrained("rinna/japanese-gpt-1b")
49
+
50
+ if torch.cuda.is_available():
51
+ model = model.to("cuda")
52
+
53
+ text = "西田幾多郎は、"
54
+ token_ids = tokenizer.encode(text, add_special_tokens=False, return_tensors="pt")
55
+
56
+ with torch.no_grad():
57
+ output_ids = model.generate(
58
+ token_ids.to(model.device),
59
+ max_length=100,
60
+ min_length=100,
61
+ do_sample=True,
62
+ top_k=500,
63
+ top_p=0.95,
64
+ pad_token_id=tokenizer.pad_token_id,
65
+ bos_token_id=tokenizer.bos_token_id,
66
+ eos_token_id=tokenizer.eos_token_id,
67
+ bad_words_ids=[[tokenizer.unk_token_id]]
68
+ )
69
+
70
+ output = tokenizer.decode(output_ids.tolist()[0])
71
+ print(output)
72
+ # sample output: 西田幾多郎は、その主著の「善の研究」などで、人間の内面に自然とその根源があると指摘し、その根源的な性格は、この西田哲学を象徴しているとして、カントの「純粋理性批判」と「判断力批判」を対比して捉えます。それは、「人が理性的存在であるかぎりにおいて、人はその当人に固有な道徳的に自覚された善悪の基準を持っている」とするもので、この理性的な善悪の観念を否定するのがカントの
73
+ ~~~~
74
+
75
+ # Model architecture
76
+ A 24-layer, 2048-hidden-size transformer-based language model.
77
+
78
+ # Training
79
+ The model was trained on [Japanese C4](https://huggingface.co/datasets/allenai/c4), [Japanese CC-100](http://data.statmt.org/cc-100/ja.txt.xz) and [Japanese Wikipedia](https://dumps.wikimedia.org/other/cirrussearch) to optimize a traditional language modelling objective. It reaches around 14 perplexity on a chosen validation set from the same data.
80
+
81
+ # Tokenization
82
+ The model uses a [sentencepiece](https://github.com/google/sentencepiece)-based tokenizer. The vocabulary was first trained on a selected subset from the training data using the official sentencepiece training script, and then augmented with emojis and symbols.
83
+
84
+ # How to cite
85
+ ```bibtex
86
+ @misc{rinna-japanese-gpt-1b,
87
+ title = {rinna/japanese-gpt-1b},
88
+ author = {Zhao, Tianyu and Sawada, Kei},
89
+ url = {https://huggingface.co/rinna/japanese-gpt-1b}
90
+ }
91
+
92
+ @inproceedings{sawada2024release,
93
+ title = {Release of Pre-Trained Models for the {J}apanese Language},
94
+ author = {Sawada, Kei and Zhao, Tianyu and Shing, Makoto and Mitsui, Kentaro and Kaga, Akio and Hono, Yukiya and Wakatsuki, Toshiaki and Mitsuda, Koh},
95
+ booktitle = {Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)},
96
+ month = {5},
97
+ year = {2024},
98
+ pages = {13898--13905},
99
+ url = {https://aclanthology.org/2024.lrec-main.1213},
100
+ note = {\url{https://arxiv.org/abs/2404.01657}}
101
+ }
102
+ ```
103
+
104
+ # Licenese
105
+ [The MIT license](https://opensource.org/licenses/MIT)
106
+
107
+