File size: 2,816 Bytes
592dbfb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
Quantization made by Richard Erkhov.

[Github](https://github.com/RichardErkhov)

[Discord](https://discord.gg/pvy7H8DZMG)

[Request more models](https://github.com/RichardErkhov/quant_request)


japanese-gpt2-medium - bnb 8bits
- Model creator: https://huggingface.co/rinna/
- Original model: https://huggingface.co/rinna/japanese-gpt2-medium/




Original model description:
---
language: ja
thumbnail: https://github.com/rinnakk/japanese-gpt2/blob/master/rinna.png
tags:
- gpt2
- text-generation
- lm
- nlp
license: mit
datasets:
- cc100
- wikipedia
widget:
- text: "生命、宇宙、そして万物についての究極の疑問の答えは"
---

# japanese-gpt2-medium

![rinna-icon](./rinna.png)

This repository provides a medium-sized Japanese GPT-2 model. The model was trained using code from Github repository [rinnakk/japanese-pretrained-models](https://github.com/rinnakk/japanese-pretrained-models) by [rinna Co., Ltd.](https://corp.rinna.co.jp/)

# How to use the model

~~~~
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("rinna/japanese-gpt2-medium", use_fast=False)
tokenizer.do_lower_case = True  # due to some bug of tokenizer config loading

model = AutoModelForCausalLM.from_pretrained("rinna/japanese-gpt2-medium")
~~~~

# Model architecture
A 24-layer, 1024-hidden-size transformer-based language model.

# Training
The model was trained on [Japanese CC-100](http://data.statmt.org/cc-100/ja.txt.xz) and [Japanese Wikipedia](https://dumps.wikimedia.org/other/cirrussearch) to optimize a traditional language modelling objective on 8\\*V100 GPUs for around 30 days. It reaches around 18 perplexity on a chosen validation set from the same data.

# Tokenization
The model uses a [sentencepiece](https://github.com/google/sentencepiece)-based tokenizer, the vocabulary was trained on the Japanese Wikipedia using the official sentencepiece training script.

# How to cite
```bibtex
@misc{rinna-japanese-gpt2-medium,
    title = {rinna/japanese-gpt2-medium},
    author = {Zhao, Tianyu and Sawada, Kei},
    url = {https://huggingface.co/rinna/japanese-gpt2-medium}
}

@inproceedings{sawada2024release,
    title = {Release of Pre-Trained Models for the {J}apanese Language},
    author = {Sawada, Kei and Zhao, Tianyu and Shing, Makoto and Mitsui, Kentaro and Kaga, Akio and Hono, Yukiya and Wakatsuki, Toshiaki and Mitsuda, Koh},
    booktitle = {Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)},
    month = {5},
    year = {2024},
    pages = {13898--13905},
    url = {https://aclanthology.org/2024.lrec-main.1213},
    note = {\url{https://arxiv.org/abs/2404.01657}}
}
```

# Licenese
[The MIT license](https://opensource.org/licenses/MIT)