RichardErkhov
commited on
uploaded readme
Browse files
README.md
ADDED
@@ -0,0 +1,231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Quantization made by Richard Erkhov.
|
2 |
+
|
3 |
+
[Github](https://github.com/RichardErkhov)
|
4 |
+
|
5 |
+
[Discord](https://discord.gg/pvy7H8DZMG)
|
6 |
+
|
7 |
+
[Request more models](https://github.com/RichardErkhov/quant_request)
|
8 |
+
|
9 |
+
|
10 |
+
llama-3-youko-8b-instruct - GGUF
|
11 |
+
- Model creator: https://huggingface.co/rinna/
|
12 |
+
- Original model: https://huggingface.co/rinna/llama-3-youko-8b-instruct/
|
13 |
+
|
14 |
+
|
15 |
+
| Name | Quant method | Size |
|
16 |
+
| ---- | ---- | ---- |
|
17 |
+
| [llama-3-youko-8b-instruct.Q2_K.gguf](https://huggingface.co/RichardErkhov/rinna_-_llama-3-youko-8b-instruct-gguf/blob/main/llama-3-youko-8b-instruct.Q2_K.gguf) | Q2_K | 2.96GB |
|
18 |
+
| [llama-3-youko-8b-instruct.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/rinna_-_llama-3-youko-8b-instruct-gguf/blob/main/llama-3-youko-8b-instruct.IQ3_XS.gguf) | IQ3_XS | 3.28GB |
|
19 |
+
| [llama-3-youko-8b-instruct.IQ3_S.gguf](https://huggingface.co/RichardErkhov/rinna_-_llama-3-youko-8b-instruct-gguf/blob/main/llama-3-youko-8b-instruct.IQ3_S.gguf) | IQ3_S | 3.43GB |
|
20 |
+
| [llama-3-youko-8b-instruct.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/rinna_-_llama-3-youko-8b-instruct-gguf/blob/main/llama-3-youko-8b-instruct.Q3_K_S.gguf) | Q3_K_S | 3.41GB |
|
21 |
+
| [llama-3-youko-8b-instruct.IQ3_M.gguf](https://huggingface.co/RichardErkhov/rinna_-_llama-3-youko-8b-instruct-gguf/blob/main/llama-3-youko-8b-instruct.IQ3_M.gguf) | IQ3_M | 3.52GB |
|
22 |
+
| [llama-3-youko-8b-instruct.Q3_K.gguf](https://huggingface.co/RichardErkhov/rinna_-_llama-3-youko-8b-instruct-gguf/blob/main/llama-3-youko-8b-instruct.Q3_K.gguf) | Q3_K | 3.74GB |
|
23 |
+
| [llama-3-youko-8b-instruct.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/rinna_-_llama-3-youko-8b-instruct-gguf/blob/main/llama-3-youko-8b-instruct.Q3_K_M.gguf) | Q3_K_M | 3.74GB |
|
24 |
+
| [llama-3-youko-8b-instruct.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/rinna_-_llama-3-youko-8b-instruct-gguf/blob/main/llama-3-youko-8b-instruct.Q3_K_L.gguf) | Q3_K_L | 4.03GB |
|
25 |
+
| [llama-3-youko-8b-instruct.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/rinna_-_llama-3-youko-8b-instruct-gguf/blob/main/llama-3-youko-8b-instruct.IQ4_XS.gguf) | IQ4_XS | 4.18GB |
|
26 |
+
| [llama-3-youko-8b-instruct.Q4_0.gguf](https://huggingface.co/RichardErkhov/rinna_-_llama-3-youko-8b-instruct-gguf/blob/main/llama-3-youko-8b-instruct.Q4_0.gguf) | Q4_0 | 4.34GB |
|
27 |
+
| [llama-3-youko-8b-instruct.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/rinna_-_llama-3-youko-8b-instruct-gguf/blob/main/llama-3-youko-8b-instruct.IQ4_NL.gguf) | IQ4_NL | 4.38GB |
|
28 |
+
| [llama-3-youko-8b-instruct.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/rinna_-_llama-3-youko-8b-instruct-gguf/blob/main/llama-3-youko-8b-instruct.Q4_K_S.gguf) | Q4_K_S | 4.37GB |
|
29 |
+
| [llama-3-youko-8b-instruct.Q4_K.gguf](https://huggingface.co/RichardErkhov/rinna_-_llama-3-youko-8b-instruct-gguf/blob/main/llama-3-youko-8b-instruct.Q4_K.gguf) | Q4_K | 4.58GB |
|
30 |
+
| [llama-3-youko-8b-instruct.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/rinna_-_llama-3-youko-8b-instruct-gguf/blob/main/llama-3-youko-8b-instruct.Q4_K_M.gguf) | Q4_K_M | 4.58GB |
|
31 |
+
| [llama-3-youko-8b-instruct.Q4_1.gguf](https://huggingface.co/RichardErkhov/rinna_-_llama-3-youko-8b-instruct-gguf/blob/main/llama-3-youko-8b-instruct.Q4_1.gguf) | Q4_1 | 4.78GB |
|
32 |
+
| [llama-3-youko-8b-instruct.Q5_0.gguf](https://huggingface.co/RichardErkhov/rinna_-_llama-3-youko-8b-instruct-gguf/blob/main/llama-3-youko-8b-instruct.Q5_0.gguf) | Q5_0 | 5.21GB |
|
33 |
+
| [llama-3-youko-8b-instruct.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/rinna_-_llama-3-youko-8b-instruct-gguf/blob/main/llama-3-youko-8b-instruct.Q5_K_S.gguf) | Q5_K_S | 5.21GB |
|
34 |
+
| [llama-3-youko-8b-instruct.Q5_K.gguf](https://huggingface.co/RichardErkhov/rinna_-_llama-3-youko-8b-instruct-gguf/blob/main/llama-3-youko-8b-instruct.Q5_K.gguf) | Q5_K | 5.34GB |
|
35 |
+
| [llama-3-youko-8b-instruct.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/rinna_-_llama-3-youko-8b-instruct-gguf/blob/main/llama-3-youko-8b-instruct.Q5_K_M.gguf) | Q5_K_M | 5.34GB |
|
36 |
+
| [llama-3-youko-8b-instruct.Q5_1.gguf](https://huggingface.co/RichardErkhov/rinna_-_llama-3-youko-8b-instruct-gguf/blob/main/llama-3-youko-8b-instruct.Q5_1.gguf) | Q5_1 | 5.65GB |
|
37 |
+
| [llama-3-youko-8b-instruct.Q6_K.gguf](https://huggingface.co/RichardErkhov/rinna_-_llama-3-youko-8b-instruct-gguf/blob/main/llama-3-youko-8b-instruct.Q6_K.gguf) | Q6_K | 6.14GB |
|
38 |
+
| [llama-3-youko-8b-instruct.Q8_0.gguf](https://huggingface.co/RichardErkhov/rinna_-_llama-3-youko-8b-instruct-gguf/blob/main/llama-3-youko-8b-instruct.Q8_0.gguf) | Q8_0 | 7.95GB |
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
Original model description:
|
44 |
+
---
|
45 |
+
thumbnail: https://github.com/rinnakk/japanese-pretrained-models/blob/master/rinna.png
|
46 |
+
license: llama3
|
47 |
+
datasets:
|
48 |
+
- CohereForAI/aya_dataset
|
49 |
+
- kunishou/databricks-dolly-15k-ja
|
50 |
+
- kunishou/HelpSteer-35k-ja
|
51 |
+
- kunishou/HelpSteer2-20k-ja
|
52 |
+
- kunishou/hh-rlhf-49k-ja
|
53 |
+
- kunishou/oasst1-chat-44k-ja
|
54 |
+
- kunishou/oasst2-chat-68k-ja
|
55 |
+
- meta-math/MetaMathQA
|
56 |
+
- OpenAssistant/oasst1
|
57 |
+
- OpenAssistant/oasst2
|
58 |
+
- sahil2801/CodeAlpaca-20k
|
59 |
+
language:
|
60 |
+
- ja
|
61 |
+
- en
|
62 |
+
tags:
|
63 |
+
- llama
|
64 |
+
- llama-3
|
65 |
+
inference: false
|
66 |
+
---
|
67 |
+
|
68 |
+
# `Llama 3 Youko 8B Instruct (rinna/llama-3-youko-8b-instruct)`
|
69 |
+
|
70 |
+
![rinna-icon](./rinna.png)
|
71 |
+
|
72 |
+
# Overview
|
73 |
+
|
74 |
+
The model is the instruction-tuned version of [rinna/llama-3-youko-8b](https://huggingface.co/rinna/llama-3-youko-8b), using supervised fine-tuning (SFT), Chat Vector, and direct preference optimization (DPO). It adpots the Llama-3 chat format.
|
75 |
+
|
76 |
+
| Size | Continual Pre-Training | Instruction-Tuning |
|
77 |
+
| :- | :- | :- |
|
78 |
+
| 8B | Llama 3 Youko 8B [[HF]](https://huggingface.co/rinna/llama-3-youko-8b) [[GPTQ]](https://huggingface.co/rinna/llama-3-youko-8b-gptq) | Llama 3 Youko 8B Instruct [[HF]](https://huggingface.co/rinna/llama-3-youko-8b-instruct) [[GPTQ]](https://huggingface.co/rinna/llama-3-youko-8b-instruct-gptq) |
|
79 |
+
| 70B | Llama 3 Youko 70B [[HF]](https://huggingface.co/rinna/llama-3-youko-70b) [[GPTQ]](https://huggingface.co/rinna/llama-3-youko-70b-gptq) | Llama 3 Youko 70B Instruct [[HF]](https://huggingface.co/rinna/llama-3-youko-70b-instruct) [[GPTQ]](https://huggingface.co/rinna/llama-3-youko-70b-instruct-gptq) |
|
80 |
+
|
81 |
+
* **Model architecture**
|
82 |
+
|
83 |
+
A 32-layer, 4096-hidden-size transformer-based language model. Refer to the [Llama 3 Model Card](https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md) for architecture details.
|
84 |
+
|
85 |
+
* **Training: Built with Meta Llama 3**
|
86 |
+
|
87 |
+
**Supervised fine-tuning.** The supervised fine-tuning data is a subset of the following datasets.
|
88 |
+
|
89 |
+
- [CohereForAI/aya_dataset](https://huggingface.co/datasets/CohereForAI/aya_dataset)
|
90 |
+
- The JPN subset was used.
|
91 |
+
- [FLAN](https://github.com/google-research/FLAN/tree/main/flan/v2)
|
92 |
+
- [kunishou/databricks-dolly-15k-ja](https://huggingface.co/datasets/kunishou/databricks-dolly-15k-ja)
|
93 |
+
- [kunishou/hh-rlhf-49k-ja](https://huggingface.co/datasets/kunishou/hh-rlhf-49k-ja)
|
94 |
+
- [kunishou/oasst1-chat-44k-ja](https://huggingface.co/datasets/kunishou/oasst1-chat-44k-ja)
|
95 |
+
- [kunishou/oasst2-chat-68k-ja](https://huggingface.co/datasets/kunishou/oasst2-chat-68k-ja)
|
96 |
+
- [meta-math/MetaMathQA](https://huggingface.co/datasets/meta-math/MetaMathQA)
|
97 |
+
- The following sections were used: MATH_AnsAug, MATH_Rephrased, MATH_SV, and MATH_FOBAR.
|
98 |
+
- The remaining sections, containing augmented data from commonly used evaluation corpora, were skipped for preventing any possibility of data leak.
|
99 |
+
- [OpenAssistant/oasst1](https://huggingface.co/datasets/OpenAssistant/oasst1)
|
100 |
+
- The EN and JA subsets were used.
|
101 |
+
- [OpenAssistant/oasst2](https://huggingface.co/datasets/OpenAssistant/oasst2)
|
102 |
+
- The EN and JA subsets were used.
|
103 |
+
- [sahil2801/CodeAlpaca-20k](https://huggingface.co/datasets/sahil2801/CodeAlpaca-20k)
|
104 |
+
- rinna Dataset
|
105 |
+
|
106 |
+
**Model merging.** The fine-tuned model (llama-3-youko-8b-sft) has been enhanced through the following chat vector addition. The chat vector was obtained by subtracting the parameter vectors of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) from those of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct).
|
107 |
+
|
108 |
+
~~~~text
|
109 |
+
llama-3-youko-8b-sft + 0.5 * (meta-llama/Meta-Llama-3-8B-Instruct - meta-llama/Meta-Llama-3-8B)
|
110 |
+
~~~~
|
111 |
+
|
112 |
+
Here, the embedding layer was skipped while subtracting and adding the parameter vectors.
|
113 |
+
|
114 |
+
**Direct preference optimization** was then applied with a subset of the following datasets to build this instruct model.
|
115 |
+
|
116 |
+
- [kunishou/HelpSteer-35k-ja](https://huggingface.co/datasets/kunishou/HelpSteer-35k-ja)
|
117 |
+
- [kunishou/HelpSteer2-20k-ja](https://huggingface.co/datasets/kunishou/HelpSteer2-20k-ja)
|
118 |
+
- rinna Dataset
|
119 |
+
|
120 |
+
* **Contributors**
|
121 |
+
|
122 |
+
- [Xinqi Chen](https://huggingface.co/Keely0419)
|
123 |
+
- [Koh Mitsuda](https://huggingface.co/mitsu-koh)
|
124 |
+
- [Toshiaki Wakatsuki](https://huggingface.co/t-w)
|
125 |
+
- [Kei Sawada](https://huggingface.co/keisawada)
|
126 |
+
|
127 |
+
---
|
128 |
+
|
129 |
+
# Benchmarking
|
130 |
+
|
131 |
+
Please refer to [rinna's LM benchmark page](https://rinnakk.github.io/research/benchmarks/lm/index.html).
|
132 |
+
|
133 |
+
---
|
134 |
+
|
135 |
+
# How to use the model
|
136 |
+
|
137 |
+
We found this instruction-tuned model tends to generate repeated text more often than its base counterpart, and thus we set repetition_penalty=1.1 for better generation performance. The same repetition penalty was applied to the instruction-tuned model in the aforementioned evaluation experiments.
|
138 |
+
|
139 |
+
~~~~python
|
140 |
+
import torch
|
141 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
142 |
+
|
143 |
+
model_id = "rinna/llama-3-youko-8b-instruct"
|
144 |
+
|
145 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
146 |
+
model = AutoModelForCausalLM.from_pretrained(
|
147 |
+
model_id,
|
148 |
+
torch_dtype=torch.bfloat16,
|
149 |
+
device_map="auto",
|
150 |
+
)
|
151 |
+
|
152 |
+
messages = [
|
153 |
+
{"role": "system", "content": "あなたは誠実で優秀なアシスタントです。どうか、簡潔かつ正直に答えてください。"},
|
154 |
+
{"role": "user", "content": "西田幾多郎とはどんな人物ですか?"},
|
155 |
+
]
|
156 |
+
|
157 |
+
input_ids = tokenizer.apply_chat_template(
|
158 |
+
messages,
|
159 |
+
add_generation_prompt=True,
|
160 |
+
return_tensors="pt"
|
161 |
+
).to(model.device)
|
162 |
+
|
163 |
+
terminators = [
|
164 |
+
tokenizer.convert_tokens_to_ids("<|end_of_text|>"),
|
165 |
+
tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
166 |
+
]
|
167 |
+
|
168 |
+
outputs = model.generate(
|
169 |
+
input_ids,
|
170 |
+
max_new_tokens=512,
|
171 |
+
eos_token_id=terminators,
|
172 |
+
do_sample=True,
|
173 |
+
temperature=0.6,
|
174 |
+
top_p=0.9,
|
175 |
+
repetition_penalty=1.1,
|
176 |
+
)
|
177 |
+
|
178 |
+
response = outputs[0][input_ids.shape[-1]:]
|
179 |
+
response = tokenizer.decode(response, skip_special_tokens=True)
|
180 |
+
print(response)
|
181 |
+
~~~~
|
182 |
+
|
183 |
+
---
|
184 |
+
|
185 |
+
# Tokenization
|
186 |
+
The model uses the original [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) tokenizer.
|
187 |
+
|
188 |
+
---
|
189 |
+
|
190 |
+
# How to cite
|
191 |
+
```bibtex
|
192 |
+
@misc{rinna-llama-3-youko-8b-instruct,
|
193 |
+
title = {rinna/llama-3-youko-8b-instruct},
|
194 |
+
author = {Chen, Xinqi and Mitsuda, Koh and Wakatsuki, Toshiaki and Sawada, Kei},
|
195 |
+
url = {https://huggingface.co/rinna/llama-3-youko-8b-instruct}
|
196 |
+
}
|
197 |
+
|
198 |
+
@inproceedings{sawada2024release,
|
199 |
+
title = {Release of Pre-Trained Models for the {J}apanese Language},
|
200 |
+
author = {Sawada, Kei and Zhao, Tianyu and Shing, Makoto and Mitsui, Kentaro and Kaga, Akio and Hono, Yukiya and Wakatsuki, Toshiaki and Mitsuda, Koh},
|
201 |
+
booktitle = {Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)},
|
202 |
+
month = {5},
|
203 |
+
year = {2024},
|
204 |
+
pages = {13898--13905},
|
205 |
+
url = {https://aclanthology.org/2024.lrec-main.1213},
|
206 |
+
note = {\url{https://arxiv.org/abs/2404.01657}}
|
207 |
+
}
|
208 |
+
```
|
209 |
+
---
|
210 |
+
|
211 |
+
# References
|
212 |
+
```bibtex
|
213 |
+
@article{llama3modelcard,
|
214 |
+
title = {Llama 3 Model Card},
|
215 |
+
author = {AI@Meta},
|
216 |
+
year = {2024},
|
217 |
+
url = {https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md}
|
218 |
+
}
|
219 |
+
|
220 |
+
@article{huang2023chat,
|
221 |
+
title = {Chat Vector: A Simple Approach to Equip LLMs with Instruction Following and Model Alignment in New Languages},
|
222 |
+
author = {Huang, Shih-Cheng and Li, Pin-Zu and Hsu, Yu-Chi and Chen, Kuang-Ming and Lin, Yu Tung and Hsiao, Shih-Kai and Tzong-Han Tsai, Richard and Lee, Hung-yi},
|
223 |
+
year = {2023},
|
224 |
+
url = {https://arxiv.org/abs/2310.04799}
|
225 |
+
}
|
226 |
+
```
|
227 |
+
---
|
228 |
+
|
229 |
+
# License
|
230 |
+
[Meta Llama 3 Community License](https://llama.meta.com/llama3/license/)
|
231 |
+
|