RichardErkhov
commited on
uploaded readme
Browse files
README.md
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Quantization made by Richard Erkhov.
|
2 |
+
|
3 |
+
[Github](https://github.com/RichardErkhov)
|
4 |
+
|
5 |
+
[Discord](https://discord.gg/pvy7H8DZMG)
|
6 |
+
|
7 |
+
[Request more models](https://github.com/RichardErkhov/quant_request)
|
8 |
+
|
9 |
+
|
10 |
+
phi-pl-2_7B-v_0_1 - bnb 4bits
|
11 |
+
- Model creator: https://huggingface.co/teddy-f-47/
|
12 |
+
- Original model: https://huggingface.co/teddy-f-47/phi-pl-2_7B-v_0_1/
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
Original model description:
|
18 |
+
---
|
19 |
+
license: mit
|
20 |
+
base_model: microsoft/phi-2
|
21 |
+
tags:
|
22 |
+
- generated_from_trainer
|
23 |
+
model-index:
|
24 |
+
- name: phi-2-pl-v_0_1
|
25 |
+
results: []
|
26 |
+
---
|
27 |
+
|
28 |
+
# phi-2-pl-v_0_1
|
29 |
+
|
30 |
+
This model is based on [microsoft/phi-2](https://huggingface.co/microsoft/phi-2). It was trained from scratch on the 20231201 Polish Wikipedia dump.
|
31 |
+
|
32 |
+
## Model description
|
33 |
+
|
34 |
+
The model was trained for a context length of 2048 tokens.
|
35 |
+
|
36 |
+
## Intended uses & limitations
|
37 |
+
|
38 |
+
The model is intended for research purposes only. It may generate fictitious, incorrect, unethical, or biased texts. At its current state, it is not suitable for production purposes.
|
39 |
+
|
40 |
+
Example:
|
41 |
+
```
|
42 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
43 |
+
model_name, trust_remote_code=True, use_fast=True
|
44 |
+
)
|
45 |
+
model = AutoModelForCausalLM.from_pretrained(
|
46 |
+
model_name, vocab_size=len(tokenizer), attn_implementation="flash_attention_2",
|
47 |
+
trust_remote_code=True, torch_dtype=torch.bfloat16, device_map="auto"
|
48 |
+
)
|
49 |
+
model.eval()
|
50 |
+
|
51 |
+
generation_config = GenerationConfig.from_pretrained(
|
52 |
+
model_name, do_sample=False, repetition_penalty=1.5,
|
53 |
+
min_new_tokens=1, max_new_tokens=128
|
54 |
+
)
|
55 |
+
|
56 |
+
test_input = tokenizer("Wrocław to polski miasto. Wrocław jest ", return_tensors='pt').to(torch.device('cuda'))
|
57 |
+
test_output = model.generate(**test_input, generation_config=generation_config)
|
58 |
+
test_preds = tokenizer.batch_decode(sequences=test_output, skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
59 |
+
print(test_preds)
|
60 |
+
```
|
61 |
+
|
62 |
+
## Training and evaluation data
|
63 |
+
|
64 |
+
The 20231201 Polish Wikipedia dump.
|
65 |
+
|
66 |
+
## Training procedure
|
67 |
+
|
68 |
+
### Training environment
|
69 |
+
|
70 |
+
- GPU: 1 x A100X (80GB)
|
71 |
+
|
72 |
+
### Training hyperparameters
|
73 |
+
|
74 |
+
The following hyperparameters were used during training:
|
75 |
+
- learning_rate: 0.0002
|
76 |
+
- num_devices: 1
|
77 |
+
- train_batch_size: 8
|
78 |
+
- gradient_accumulation_steps: 1
|
79 |
+
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-07
|
80 |
+
- lr_scheduler_type: cosine
|
81 |
+
- lr_scheduler_warmup_ratio: 0.1
|
82 |
+
- num_epochs: 1
|
83 |
+
- precision: bf16
|
84 |
+
- seed: 42
|
85 |
+
|
86 |
+
### Training results
|
87 |
+
|
88 |
+
- runtime: 1mo 3d 9h 40m 16s
|
89 |
+
- train_loss: 2.983
|
90 |
+
|
91 |
+
### Framework versions
|
92 |
+
|
93 |
+
- Transformers 4.37.1
|
94 |
+
- Pytorch 2.1.2
|
95 |
+
- Datasets 2.16.1
|
96 |
+
- Tokenizers 0.15.1
|
97 |
+
|
98 |
+
|