Ridealist commited on
Commit
914209a
1 Parent(s): 1f01075

Upload checkpoints

Browse files
README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: liuhaotian/llava-v1.5-13b
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.8.2
adapter_config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "liuhaotian/llava-v1.5-13b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 256,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 128,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "v_proj",
23
+ "o_proj",
24
+ "up_proj",
25
+ "gate_proj",
26
+ "q_proj",
27
+ "down_proj",
28
+ "k_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM",
31
+ "use_rslora": false
32
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:16b68fe85a6151363c44a68e95c5e2f1cd789c9ead7262641b9c94b9ea024b1c
3
+ size 1001466944
config.json ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "liuhaotian/llava-v1.5-13b",
3
+ "architectures": [
4
+ "LlavaLlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "freeze_mm_mlp_adapter": false,
11
+ "freeze_mm_vision_resampler": false,
12
+ "hidden_act": "silu",
13
+ "hidden_size": 5120,
14
+ "image_aspect_ratio": "pad",
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 13824,
17
+ "max_length": 4096,
18
+ "max_position_embeddings": 4096,
19
+ "mm_hidden_size": 1024,
20
+ "mm_patch_merge_type": "flat",
21
+ "mm_projector_lr": 2e-05,
22
+ "mm_projector_type": "mlp2x_gelu",
23
+ "mm_resampler_type": null,
24
+ "mm_use_im_patch_token": false,
25
+ "mm_use_im_start_end": false,
26
+ "mm_vision_select_feature": "patch",
27
+ "mm_vision_select_layer": -2,
28
+ "mm_vision_tower": "openai/clip-vit-large-patch14-336",
29
+ "model_type": "llava_llama",
30
+ "num_attention_heads": 40,
31
+ "num_hidden_layers": 40,
32
+ "num_key_value_heads": 40,
33
+ "pad_token_id": 0,
34
+ "pretraining_tp": 1,
35
+ "rms_norm_eps": 1e-05,
36
+ "rope_scaling": null,
37
+ "rope_theta": 10000.0,
38
+ "tie_word_embeddings": false,
39
+ "tokenizer_model_max_length": 2048,
40
+ "tokenizer_padding_side": "right",
41
+ "torch_dtype": "float16",
42
+ "transformers_version": "4.37.2",
43
+ "tune_mm_mlp_adapter": false,
44
+ "tune_mm_vision_resampler": false,
45
+ "unfreeze_mm_vision_tower": false,
46
+ "use_cache": true,
47
+ "use_mm_proj": true,
48
+ "vocab_size": 32000
49
+ }
non_lora_trainables.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d68ddfe6ce0358ed97665d43ab246ef5884bd28da1ad884819ce894242a22ee8
3
+ size 62937264
trainer_state.json ADDED
@@ -0,0 +1,474 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 500,
6
+ "global_step": 74,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "learning_rate": 6.666666666666667e-05,
14
+ "loss": 1.7195,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.03,
19
+ "learning_rate": 0.00013333333333333334,
20
+ "loss": 1.7455,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.04,
25
+ "learning_rate": 0.0002,
26
+ "loss": 1.6774,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.05,
31
+ "learning_rate": 0.00019990212265199738,
32
+ "loss": 1.5637,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.07,
37
+ "learning_rate": 0.00019960868220749448,
38
+ "loss": 1.5396,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.08,
43
+ "learning_rate": 0.00019912025308994148,
44
+ "loss": 1.4398,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.09,
49
+ "learning_rate": 0.00019843779142227256,
50
+ "loss": 1.4331,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.11,
55
+ "learning_rate": 0.0001975626331552507,
56
+ "loss": 1.3507,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.12,
61
+ "learning_rate": 0.00019649649145228102,
62
+ "loss": 1.3126,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.14,
67
+ "learning_rate": 0.00019524145333581317,
68
+ "loss": 1.2983,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.15,
73
+ "learning_rate": 0.00019379997560189675,
74
+ "loss": 1.3245,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.16,
79
+ "learning_rate": 0.00019217488001088784,
80
+ "loss": 1.2862,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.18,
85
+ "learning_rate": 0.0001903693477637204,
86
+ "loss": 1.3176,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.19,
91
+ "learning_rate": 0.0001883869132745561,
92
+ "loss": 1.2571,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.2,
97
+ "learning_rate": 0.00018623145725200278,
98
+ "loss": 1.2672,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.22,
103
+ "learning_rate": 0.00018390719910244487,
104
+ "loss": 1.2419,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.23,
109
+ "learning_rate": 0.00018141868867035745,
110
+ "loss": 1.1957,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.24,
115
+ "learning_rate": 0.00017877079733177184,
116
+ "loss": 1.2108,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.26,
121
+ "learning_rate": 0.0001759687084583285,
122
+ "loss": 1.2339,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.27,
127
+ "learning_rate": 0.00017301790727058345,
128
+ "loss": 1.1814,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.28,
133
+ "learning_rate": 0.00016992417010043142,
134
+ "loss": 1.2099,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.3,
139
+ "learning_rate": 0.0001666935530836651,
140
+ "loss": 1.1888,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.31,
145
+ "learning_rate": 0.0001633323803048047,
146
+ "loss": 1.1456,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.32,
151
+ "learning_rate": 0.00015984723141740576,
152
+ "loss": 1.1857,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.34,
157
+ "learning_rate": 0.0001562449287640781,
158
+ "loss": 1.1673,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.35,
163
+ "learning_rate": 0.00015253252402142988,
164
+ "loss": 1.1486,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.36,
169
+ "learning_rate": 0.00014871728439607966,
170
+ "loss": 1.1618,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.38,
175
+ "learning_rate": 0.00014480667839875786,
176
+ "loss": 1.1615,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.39,
181
+ "learning_rate": 0.0001408083612243465,
182
+ "loss": 1.1551,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.41,
187
+ "learning_rate": 0.00013673015976647568,
188
+ "loss": 1.1877,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.42,
193
+ "learning_rate": 0.00013258005729601177,
194
+ "loss": 1.1489,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.43,
199
+ "learning_rate": 0.0001283661778334297,
200
+ "loss": 1.1398,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.45,
205
+ "learning_rate": 0.00012409677024566144,
206
+ "loss": 1.1161,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.46,
211
+ "learning_rate": 0.00011978019209855174,
212
+ "loss": 1.1278,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.47,
217
+ "learning_rate": 0.00011542489329653024,
218
+ "loss": 1.1385,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.49,
223
+ "learning_rate": 0.000111039399541527,
224
+ "loss": 1.1242,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.5,
229
+ "learning_rate": 0.00010663229564351041,
230
+ "loss": 1.0724,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.51,
235
+ "learning_rate": 0.00010221220871531869,
236
+ "loss": 1.1417,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.53,
241
+ "learning_rate": 9.778779128468132e-05,
242
+ "loss": 1.1003,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.54,
247
+ "learning_rate": 9.336770435648964e-05,
248
+ "loss": 1.1438,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.55,
253
+ "learning_rate": 8.896060045847304e-05,
254
+ "loss": 1.1069,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.57,
259
+ "learning_rate": 8.457510670346976e-05,
260
+ "loss": 1.122,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.58,
265
+ "learning_rate": 8.021980790144827e-05,
266
+ "loss": 1.1105,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.59,
271
+ "learning_rate": 7.590322975433857e-05,
272
+ "loss": 1.1796,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.61,
277
+ "learning_rate": 7.163382216657034e-05,
278
+ "loss": 1.1247,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.62,
283
+ "learning_rate": 6.741994270398826e-05,
284
+ "loss": 1.1206,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.64,
289
+ "learning_rate": 6.326984023352435e-05,
290
+ "loss": 1.1108,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.65,
295
+ "learning_rate": 5.91916387756535e-05,
296
+ "loss": 1.0583,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.66,
301
+ "learning_rate": 5.5193321601242156e-05,
302
+ "loss": 1.0866,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.68,
307
+ "learning_rate": 5.1282715603920374e-05,
308
+ "loss": 1.1098,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.69,
313
+ "learning_rate": 4.746747597857014e-05,
314
+ "loss": 1.1054,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.7,
319
+ "learning_rate": 4.375507123592194e-05,
320
+ "loss": 1.1232,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.72,
325
+ "learning_rate": 4.015276858259427e-05,
326
+ "loss": 1.0834,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.73,
331
+ "learning_rate": 3.6667619695195285e-05,
332
+ "loss": 1.1167,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.74,
337
+ "learning_rate": 3.330644691633492e-05,
338
+ "loss": 1.1175,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.76,
343
+ "learning_rate": 3.0075829899568597e-05,
344
+ "loss": 1.0868,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.77,
349
+ "learning_rate": 2.6982092729416587e-05,
350
+ "loss": 1.0981,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.78,
355
+ "learning_rate": 2.403129154167153e-05,
356
+ "loss": 1.0785,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.8,
361
+ "learning_rate": 2.1229202668228197e-05,
362
+ "loss": 1.0842,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.81,
367
+ "learning_rate": 1.858131132964259e-05,
368
+ "loss": 1.098,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.82,
373
+ "learning_rate": 1.609280089755515e-05,
374
+ "loss": 1.0851,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.84,
379
+ "learning_rate": 1.3768542747997215e-05,
380
+ "loss": 1.087,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.85,
385
+ "learning_rate": 1.161308672544389e-05,
386
+ "loss": 1.0674,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.86,
391
+ "learning_rate": 9.630652236279625e-06,
392
+ "loss": 1.134,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.88,
397
+ "learning_rate": 7.825119989112173e-06,
398
+ "loss": 1.0663,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.89,
403
+ "learning_rate": 6.200024398103255e-06,
404
+ "loss": 1.0968,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.91,
409
+ "learning_rate": 4.758546664186869e-06,
410
+ "loss": 1.1045,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.92,
415
+ "learning_rate": 3.5035085477190143e-06,
416
+ "loss": 1.0606,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.93,
421
+ "learning_rate": 2.4373668447493224e-06,
422
+ "loss": 1.061,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.95,
427
+ "learning_rate": 1.562208577727442e-06,
428
+ "loss": 1.068,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.96,
433
+ "learning_rate": 8.797469100585431e-07,
434
+ "loss": 1.066,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.97,
439
+ "learning_rate": 3.913177925055189e-07,
440
+ "loss": 1.0895,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.99,
445
+ "learning_rate": 9.78773480026396e-08,
446
+ "loss": 1.0862,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 1.0,
451
+ "learning_rate": 0.0,
452
+ "loss": 0.9774,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 1.0,
457
+ "step": 74,
458
+ "total_flos": 43635507462144.0,
459
+ "train_loss": 1.1855848898758758,
460
+ "train_runtime": 1454.9887,
461
+ "train_samples_per_second": 6.428,
462
+ "train_steps_per_second": 0.051
463
+ }
464
+ ],
465
+ "logging_steps": 1.0,
466
+ "max_steps": 74,
467
+ "num_input_tokens_seen": 0,
468
+ "num_train_epochs": 1,
469
+ "save_steps": 50000,
470
+ "total_flos": 43635507462144.0,
471
+ "train_batch_size": 16,
472
+ "trial_name": null,
473
+ "trial_params": null
474
+ }