File size: 10,096 Bytes
aa2269b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import torch
import torch.nn as nn
import torch.nn.functional as F
import math

class PositionalEncoding(nn.Module):
    def __init__(self, d_model, max_len=5000):
        super(PositionalEncoding, self).__init__()
        pe = torch.zeros(max_len, d_model)
        position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        pe = pe.unsqueeze(0).transpose(0, 1)
        self.register_buffer('pe', pe)

    def forward(self, x):
        x = x + self.pe[:x.size(0), :]
        return x

class StochasticDepth(nn.Module):
    def __init__(self, p=0.8):
        super().__init__()
        self.p = p

    def forward(self, x, residual):
        if self.training:
            if torch.rand(1).item() < self.p:
                return x + residual
            else:
                return x
        else:
            return x + self.p * residual

class AdvancedTransformerLayer(nn.Module):
    def __init__(self, d_model, nhead, dropout=0.1, stoch_depth_p=0.8):
        super().__init__()
        dim_feedforward = 4 * d_model
        self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
        self.ff = nn.Sequential(
            nn.Linear(d_model, dim_feedforward),
            nn.ReLU(),
            nn.Linear(dim_feedforward, d_model)
        )
        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.dropout = nn.Dropout(dropout)
        self.stoch_depth = StochasticDepth(stoch_depth_p)

    def forward(self, x, src_mask=None, src_key_padding_mask=None):
        # x shape: (seq_len, batch_size, d_model)
        norm_x = self.norm1(x)

        # Convert boolean mask to float mask
        if src_key_padding_mask is not None:
            src_key_padding_mask = src_key_padding_mask.float().masked_fill(
                src_key_padding_mask, float('-inf')).masked_fill(~src_key_padding_mask, float(0.0))

        attn_output, _ = self.self_attn(norm_x, norm_x, norm_x, 
                                        attn_mask=src_mask,
                                        key_padding_mask=src_key_padding_mask)
        x = self.stoch_depth(x, self.dropout(attn_output))
        
        norm_x = self.norm2(x)
        ff_output = self.ff(norm_x)
        x = self.stoch_depth(x, self.dropout(ff_output))
        return x

class ChessTransformer(nn.Module):
    def __init__(self, num_layers=64, d_model=1024, nhead=8, dropout=0.1, stoch_depth_p=0.9, num_tokens=2066, pad_token_id=2064):
        super().__init__()
        self.embedding = nn.Embedding(num_tokens, d_model)
        self.pos_encoder = PositionalEncoding(d_model)
        self.layers = nn.ModuleList([
            AdvancedTransformerLayer(d_model, nhead, dropout, stoch_depth_p)
            for _ in range(num_layers)
        ])
        self.norm = nn.LayerNorm(d_model)
        self.output = nn.Linear(d_model, num_tokens)
        self.d_model = d_model
        self.padding_idx = pad_token_id

    def generate_square_subsequent_mask(self, sz):
        mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
        mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
        return mask
    
    def pad_sequences(self, sequences):
        padding_value = self.padding_idx
        max_len = max(len(seq) for seq in sequences)
        padded_seqs = [seq + [padding_value] * (max_len - len(seq)) for seq in sequences]
        return torch.LongTensor(padded_seqs)

    def forward(self, x):
        # x shape: (batch_size, seq_len)
        batch_size, seq_len = x.size()
        
        # Create padding mask
        padding_mask = (x == self.padding_idx)
        
        # Create causal mask
        causal_mask = self.generate_square_subsequent_mask(seq_len).to(x.device)
        
        # Embed and add positional encoding
        x = self.embedding(x).transpose(0, 1) * math.sqrt(self.d_model)
        x = self.pos_encoder(x)
        
        # Pass through each layer
        for layer in self.layers:
            x = layer(x, src_mask=causal_mask, src_key_padding_mask=padding_mask)
        
        x = self.norm(x)
        output = self.output(x.transpose(0, 1))
        
        return output

def winning_moves_loss(output, ground_truth, win_labels, pad_token_id=2064, start_token_id=2065):
    """
    Compute the loss only for the winning moves of white and black.
    """
    output = output.cuda()
    ground_truth = ground_truth.cuda()
    win_labels = win_labels.cuda()

    batch_size, seq_len, num_tokens = output.shape
    
    # Shift the ground truth to align with the output predictions
    ground_truth_shifted = ground_truth[:, 1:].contiguous()
    output_shifted = output[:, :-1, :].contiguous()
    
    # Flatten the output and ground truth for easier masking
    output_flat = output_shifted.view(-1, num_tokens)
    ground_truth_flat = ground_truth_shifted.view(-1)
    
    # Apply log softmax to the flattened output
    output_log_softmax = F.log_softmax(output_flat, dim=-1)
    
    # Repeat win_labels for each move in the sequence
    win_labels_expanded = win_labels.unsqueeze(1).repeat(1, seq_len - 1).view(-1)
    
    # Create a mask for the winning moves
    move_indices = torch.arange(seq_len - 1, device=output.device).unsqueeze(0).repeat(batch_size, 1).view(-1)
    white_win_mask = (win_labels_expanded == 1) & (move_indices % 2 == 0)
    black_win_mask = (win_labels_expanded == 0) & (move_indices % 2 == 1)
  
    # Combine the masks
    selected_moves_mask = (white_win_mask | black_win_mask) & (ground_truth_flat != pad_token_id) & (ground_truth_flat != start_token_id)

    # Calculate the negative log-likelihood loss only for the selected moves
    loss = F.nll_loss(output_log_softmax, ground_truth_flat, reduction='none')

    loss = loss * selected_moves_mask.float()
    
    # Average the loss over the selected moves
    selected_moves_count = selected_moves_mask.float().sum()
    if selected_moves_count > 0:
        loss = loss.sum() / selected_moves_count
    else:
        loss = loss.sum()  # If no moves are selected, return 0 loss
    
    return loss

def all_moves_loss(output, ground_truth, pad_token_id=2064, start_token_id=2065):
    """
    Compute the loss for all valid moves in the sequence, excluding start and padding tokens.
    """
    batch_size, seq_len, num_tokens = output.shape

    output = output.cuda()
    ground_truth = ground_truth.cuda()
    
    # Shift the output and ground truth to align them
    output_shifted = output[:, :-1, :].contiguous()
    ground_truth_shifted = ground_truth[:, 1:].contiguous()
    
    # Flatten the shifted output and ground truth
    output_flat = output_shifted.view(-1, num_tokens)
    ground_truth_flat = ground_truth_shifted.view(-1)

    # Apply log softmax to the flattened output
    output_log_softmax = F.log_softmax(output_flat, dim=-1)

    # Create a mask for all valid moves (excluding padding and start tokens)
    valid_moves_mask = ((ground_truth_flat != pad_token_id) & 
                        (ground_truth_flat != start_token_id))

    # Calculate the negative log-likelihood loss for all moves
    loss = F.nll_loss(output_log_softmax, ground_truth_flat, reduction='none')
    
    # Apply the mask to exclude padding and start tokens
    loss = loss * valid_moves_mask.float()
    
    # Average the loss over all valid moves
    valid_moves_count = valid_moves_mask.float().sum()
    if valid_moves_count > 0:
        loss = loss.sum() / valid_moves_count
    else:
        loss = loss.sum()  # If no valid moves, return 0 loss
    
    return loss

def weighted_chess_loss(output, ground_truth, win_labels, winning_weight=1.0, losing_weight=0.1, pad_token_id=2064, start_token_id=2065):
    """
    Compute a weighted loss for all moves, with higher weight for winning moves.
    """
    output = output.cuda()
    ground_truth = ground_truth.cuda()
    win_labels = win_labels.cuda()

    batch_size, seq_len, num_tokens = output.shape
    
    # Shift the ground truth to align with the output predictions
    ground_truth_shifted = ground_truth[:, 1:].contiguous()
    output_shifted = output[:, :-1, :].contiguous()
    
    # Flatten the output and ground truth for easier masking
    output_flat = output_shifted.view(-1, num_tokens)
    ground_truth_flat = ground_truth_shifted.view(-1)
    
    # Apply log softmax to the flattened output
    output_log_softmax = F.log_softmax(output_flat, dim=-1)
    
    # Repeat win_labels for each move in the sequence
    win_labels_expanded = win_labels.unsqueeze(1).repeat(1, seq_len - 1).view(-1)
    
    # Create masks for winning and losing moves
    move_indices = torch.arange(seq_len - 1, device=output.device).unsqueeze(0).repeat(batch_size, 1).view(-1)
    white_win_mask = (win_labels_expanded == 1) & (move_indices % 2 == 0)
    black_win_mask = (win_labels_expanded == 0) & (move_indices % 2 == 1)
    winning_moves_mask = white_win_mask | black_win_mask
    
    # Create a mask for all valid moves (excluding padding and start tokens)
    valid_moves_mask = (ground_truth_flat != pad_token_id) & (ground_truth_flat != start_token_id)
    
    # Calculate the negative log-likelihood loss for all valid moves
    loss = F.nll_loss(output_log_softmax, ground_truth_flat, reduction='none')
    
    # Apply weights based on whether the move is winning or losing
    weights = torch.where(winning_moves_mask & valid_moves_mask, winning_weight, losing_weight)
    
    # Apply the weights and the valid moves mask to the loss
    weighted_loss = loss * weights * valid_moves_mask.float()
    
    # Average the loss over all valid moves
    valid_moves_count = valid_moves_mask.float().sum()
    if valid_moves_count > 0:
        avg_loss = weighted_loss.sum() / valid_moves_count
    else:
        avg_loss = weighted_loss.sum()  # If no valid moves, return 0 loss
    
    return avg_loss