File size: 15,297 Bytes
67bb36a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
#ifndef YOLOV5_COMMON_H_
#define YOLOV5_COMMON_H_
#include <fstream>
#include <map>
#include <sstream>
#include <vector>
#include <opencv2/opencv.hpp>
#include "NvInfer.h"
#include "yololayer.h"
using namespace nvinfer1;
cv::Rect get_rect(cv::Mat& img, float bbox[4]) {
int l, r, t, b;
float r_w = Yolo::INPUT_W / (img.cols * 1.0);
float r_h = Yolo::INPUT_H / (img.rows * 1.0);
if (r_h > r_w) {
l = bbox[0] - bbox[2] / 2.f;
r = bbox[0] + bbox[2] / 2.f;
t = bbox[1] - bbox[3] / 2.f - (Yolo::INPUT_H - r_w * img.rows) / 2;
b = bbox[1] + bbox[3] / 2.f - (Yolo::INPUT_H - r_w * img.rows) / 2;
l = l / r_w;
r = r / r_w;
t = t / r_w;
b = b / r_w;
} else {
l = bbox[0] - bbox[2] / 2.f - (Yolo::INPUT_W - r_h * img.cols) / 2;
r = bbox[0] + bbox[2] / 2.f - (Yolo::INPUT_W - r_h * img.cols) / 2;
t = bbox[1] - bbox[3] / 2.f;
b = bbox[1] + bbox[3] / 2.f;
l = l / r_h;
r = r / r_h;
t = t / r_h;
b = b / r_h;
}
return cv::Rect(l, t, r - l, b - t);
}
float iou(float lbox[4], float rbox[4]) {
float interBox[] = {
(std::max)(lbox[0] - lbox[2] / 2.f , rbox[0] - rbox[2] / 2.f), //left
(std::min)(lbox[0] + lbox[2] / 2.f , rbox[0] + rbox[2] / 2.f), //right
(std::max)(lbox[1] - lbox[3] / 2.f , rbox[1] - rbox[3] / 2.f), //top
(std::min)(lbox[1] + lbox[3] / 2.f , rbox[1] + rbox[3] / 2.f), //bottom
};
if (interBox[2] > interBox[3] || interBox[0] > interBox[1])
return 0.0f;
float interBoxS = (interBox[1] - interBox[0])*(interBox[3] - interBox[2]);
return interBoxS / (lbox[2] * lbox[3] + rbox[2] * rbox[3] - interBoxS);
}
bool cmp(const Yolo::Detection& a, const Yolo::Detection& b) {
return a.conf > b.conf;
}
void nms(std::vector<Yolo::Detection>& res, float *output, float conf_thresh, float nms_thresh = 0.5) {
int det_size = sizeof(Yolo::Detection) / sizeof(float);
std::map<float, std::vector<Yolo::Detection>> m;
for (int i = 0; i < output[0] && i < Yolo::MAX_OUTPUT_BBOX_COUNT; i++) {
if (output[1 + det_size * i + 4] <= conf_thresh) continue;
Yolo::Detection det;
memcpy(&det, &output[1 + det_size * i], det_size * sizeof(float));
if (m.count(det.class_id) == 0) m.emplace(det.class_id, std::vector<Yolo::Detection>());
m[det.class_id].push_back(det);
}
for (auto it = m.begin(); it != m.end(); it++) {
//std::cout << it->second[0].class_id << " --- " << std::endl;
auto& dets = it->second;
std::sort(dets.begin(), dets.end(), cmp);
for (size_t m = 0; m < dets.size(); ++m) {
auto& item = dets[m];
res.push_back(item);
for (size_t n = m + 1; n < dets.size(); ++n) {
if (iou(item.bbox, dets[n].bbox) > nms_thresh) {
dets.erase(dets.begin() + n);
--n;
}
}
}
}
}
// TensorRT weight files have a simple space delimited format:
// [type] [size] <data x size in hex>
std::map<std::string, Weights> loadWeights(const std::string file) {
std::cout << "Loading weights: " << file << std::endl;
std::map<std::string, Weights> weightMap;
// Open weights file
std::ifstream input(file);
assert(input.is_open() && "Unable to load weight file. please check if the .wts file path is right!!!!!!");
// Read number of weight blobs
int32_t count;
input >> count;
assert(count > 0 && "Invalid weight map file.");
while (count--)
{
Weights wt{ DataType::kFLOAT, nullptr, 0 };
uint32_t size;
// Read name and type of blob
std::string name;
input >> name >> std::dec >> size;
wt.type = DataType::kFLOAT;
// Load blob
uint32_t* val = reinterpret_cast<uint32_t*>(malloc(sizeof(val) * size));
for (uint32_t x = 0, y = size; x < y; ++x)
{
input >> std::hex >> val[x];
}
wt.values = val;
wt.count = size;
weightMap[name] = wt;
}
return weightMap;
}
IScaleLayer* addBatchNorm2d(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, std::string lname, float eps) {
float *gamma = (float*)weightMap[lname + ".weight"].values;
float *beta = (float*)weightMap[lname + ".bias"].values;
float *mean = (float*)weightMap[lname + ".running_mean"].values;
float *var = (float*)weightMap[lname + ".running_var"].values;
int len = weightMap[lname + ".running_var"].count;
float *scval = reinterpret_cast<float*>(malloc(sizeof(float) * len));
for (int i = 0; i < len; i++) {
scval[i] = gamma[i] / sqrt(var[i] + eps);
}
Weights scale{ DataType::kFLOAT, scval, len };
float *shval = reinterpret_cast<float*>(malloc(sizeof(float) * len));
for (int i = 0; i < len; i++) {
shval[i] = beta[i] - mean[i] * gamma[i] / sqrt(var[i] + eps);
}
Weights shift{ DataType::kFLOAT, shval, len };
float *pval = reinterpret_cast<float*>(malloc(sizeof(float) * len));
for (int i = 0; i < len; i++) {
pval[i] = 1.0;
}
Weights power{ DataType::kFLOAT, pval, len };
weightMap[lname + ".scale"] = scale;
weightMap[lname + ".shift"] = shift;
weightMap[lname + ".power"] = power;
IScaleLayer* scale_1 = network->addScale(input, ScaleMode::kCHANNEL, shift, scale, power);
assert(scale_1);
return scale_1;
}
ILayer* convBlock(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, int outch, int ksize, int s, int g, std::string lname) {
Weights emptywts{ DataType::kFLOAT, nullptr, 0 };
int p = ksize / 2;
IConvolutionLayer* conv1 = network->addConvolutionNd(input, outch, DimsHW{ ksize, ksize }, weightMap[lname + ".conv.weight"], emptywts);
assert(conv1);
conv1->setStrideNd(DimsHW{ s, s });
conv1->setPaddingNd(DimsHW{ p, p });
conv1->setNbGroups(g);
IScaleLayer* bn1 = addBatchNorm2d(network, weightMap, *conv1->getOutput(0), lname + ".bn", 1e-3);
// silu = x * sigmoid
// auto sig = network->addActivation(*bn1->getOutput(0), ActivationType::kSIGMOID);
// assert(sig);
// auto ew = network->addElementWise(*bn1->getOutput(0), *sig->getOutput(0), ElementWiseOperation::kPROD);
// assert(ew);
// hard_swish = x * hard_sigmoid
auto hsig = network->addActivation(*bn1->getOutput(0), ActivationType::kHARD_SIGMOID);
assert(hsig);
hsig->setAlpha(1.0 / 6.0);
hsig->setBeta(0.5);
auto ew = network->addElementWise(*bn1->getOutput(0), *hsig->getOutput(0), ElementWiseOperation::kPROD);
assert(ew);
return ew;
}
ILayer* focus(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, int inch, int outch, int ksize, std::string lname) {
ISliceLayer *s1 = network->addSlice(input, Dims3{ 0, 0, 0 }, Dims3{ inch, Yolo::INPUT_H / 2, Yolo::INPUT_W / 2 }, Dims3{ 1, 2, 2 });
ISliceLayer *s2 = network->addSlice(input, Dims3{ 0, 1, 0 }, Dims3{ inch, Yolo::INPUT_H / 2, Yolo::INPUT_W / 2 }, Dims3{ 1, 2, 2 });
ISliceLayer *s3 = network->addSlice(input, Dims3{ 0, 0, 1 }, Dims3{ inch, Yolo::INPUT_H / 2, Yolo::INPUT_W / 2 }, Dims3{ 1, 2, 2 });
ISliceLayer *s4 = network->addSlice(input, Dims3{ 0, 1, 1 }, Dims3{ inch, Yolo::INPUT_H / 2, Yolo::INPUT_W / 2 }, Dims3{ 1, 2, 2 });
ITensor* inputTensors[] = { s1->getOutput(0), s2->getOutput(0), s3->getOutput(0), s4->getOutput(0) };
auto cat = network->addConcatenation(inputTensors, 4);
auto conv = convBlock(network, weightMap, *cat->getOutput(0), outch, ksize, 1, 1, lname + ".conv");
return conv;
}
ILayer* bottleneck(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, int c1, int c2, bool shortcut, int g, float e, std::string lname) {
auto cv1 = convBlock(network, weightMap, input, (int)((float)c2 * e), 1, 1, 1, lname + ".cv1");
auto cv2 = convBlock(network, weightMap, *cv1->getOutput(0), c2, 3, 1, g, lname + ".cv2");
if (shortcut && c1 == c2) {
auto ew = network->addElementWise(input, *cv2->getOutput(0), ElementWiseOperation::kSUM);
return ew;
}
return cv2;
}
ILayer* bottleneckCSP(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, int c1, int c2, int n, bool shortcut, int g, float e, std::string lname) {
Weights emptywts{ DataType::kFLOAT, nullptr, 0 };
int c_ = (int)((float)c2 * e);
auto cv1 = convBlock(network, weightMap, input, c_, 1, 1, 1, lname + ".cv1");
auto cv2 = network->addConvolutionNd(input, c_, DimsHW{ 1, 1 }, weightMap[lname + ".cv2.weight"], emptywts);
ITensor *y1 = cv1->getOutput(0);
for (int i = 0; i < n; i++) {
auto b = bottleneck(network, weightMap, *y1, c_, c_, shortcut, g, 1.0, lname + ".m." + std::to_string(i));
y1 = b->getOutput(0);
}
auto cv3 = network->addConvolutionNd(*y1, c_, DimsHW{ 1, 1 }, weightMap[lname + ".cv3.weight"], emptywts);
ITensor* inputTensors[] = { cv3->getOutput(0), cv2->getOutput(0) };
auto cat = network->addConcatenation(inputTensors, 2);
IScaleLayer* bn = addBatchNorm2d(network, weightMap, *cat->getOutput(0), lname + ".bn", 1e-4);
auto lr = network->addActivation(*bn->getOutput(0), ActivationType::kLEAKY_RELU);
lr->setAlpha(0.1);
auto cv4 = convBlock(network, weightMap, *lr->getOutput(0), c2, 1, 1, 1, lname + ".cv4");
return cv4;
}
ILayer* C3(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, int c1, int c2, int n, bool shortcut, int g, float e, std::string lname) {
int c_ = (int)((float)c2 * e);
auto cv1 = convBlock(network, weightMap, input, c_, 1, 1, 1, lname + ".cv1");
auto cv2 = convBlock(network, weightMap, input, c_, 1, 1, 1, lname + ".cv2");
ITensor *y1 = cv1->getOutput(0);
for (int i = 0; i < n; i++) {
auto b = bottleneck(network, weightMap, *y1, c_, c_, shortcut, g, 1.0, lname + ".m." + std::to_string(i));
y1 = b->getOutput(0);
}
ITensor* inputTensors[] = { y1, cv2->getOutput(0) };
auto cat = network->addConcatenation(inputTensors, 2);
auto cv3 = convBlock(network, weightMap, *cat->getOutput(0), c2, 1, 1, 1, lname + ".cv3");
return cv3;
}
ILayer* SPP(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, int c1, int c2, int k1, int k2, int k3, std::string lname) {
int c_ = c1 / 2;
auto cv1 = convBlock(network, weightMap, input, c_, 1, 1, 1, lname + ".cv1");
auto pool1 = network->addPoolingNd(*cv1->getOutput(0), PoolingType::kMAX, DimsHW{ k1, k1 });
pool1->setPaddingNd(DimsHW{ k1 / 2, k1 / 2 });
pool1->setStrideNd(DimsHW{ 1, 1 });
auto pool2 = network->addPoolingNd(*cv1->getOutput(0), PoolingType::kMAX, DimsHW{ k2, k2 });
pool2->setPaddingNd(DimsHW{ k2 / 2, k2 / 2 });
pool2->setStrideNd(DimsHW{ 1, 1 });
auto pool3 = network->addPoolingNd(*cv1->getOutput(0), PoolingType::kMAX, DimsHW{ k3, k3 });
pool3->setPaddingNd(DimsHW{ k3 / 2, k3 / 2 });
pool3->setStrideNd(DimsHW{ 1, 1 });
ITensor* inputTensors[] = { cv1->getOutput(0), pool1->getOutput(0), pool2->getOutput(0), pool3->getOutput(0) };
auto cat = network->addConcatenation(inputTensors, 4);
auto cv2 = convBlock(network, weightMap, *cat->getOutput(0), c2, 1, 1, 1, lname + ".cv2");
return cv2;
}
ILayer* preprocess_layer(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input) {
// rescale
auto rescale = network->addResize(input);
rescale->setOutputDimensions(Dims3{ 3, Yolo::IMG_H, Yolo::IMG_W });
rescale->setResizeMode(ResizeMode::kLINEAR);
// normalize
// long len = 3 * Yolo::IMG_H * Yolo::IMG_W;
// float *normval = reinterpret_cast<float*>(malloc(sizeof(float) * len));
// for (size_t i = 0; i < len; ++i) {
// normval[i] = 255.0;
// }
// Weights norm{ DataType::kFLOAT, normval, len };
// weightMap["prep.norm"] = norm;
// auto constant = network->addConstant(Dims3{ 3, Yolo::IMG_H, Yolo::IMG_W }, norm);
// auto normalize = network->addElementWise(*rescale->getOutput(0), *constant->getOutput(0), ElementWiseOperation::kDIV);
//paddng
auto padding = network->addPaddingNd(*rescale->getOutput(0),
DimsHW{ (Yolo::INPUT_H - Yolo::IMG_H) / 2, (Yolo::INPUT_W - Yolo::IMG_W) / 2 },
DimsHW{ (Yolo::INPUT_H - Yolo::IMG_H) / 2, (Yolo::INPUT_W - Yolo::IMG_W) / 2 });
assert(padding);
return padding;
}
std::vector<float> getAnchors(std::map<std::string, Weights>& weightMap)
{
std::vector<float> anchors_yolo;
Weights Yolo_Anchors = weightMap["model.24.anchor_grid"];
assert(Yolo_Anchors.count == 18);
int each_yololayer_anchorsnum = Yolo_Anchors.count / 3;
const float* tempAnchors = (const float*)(Yolo_Anchors.values);
for (int i = 0; i < Yolo_Anchors.count; i++)
{
if (i < each_yololayer_anchorsnum)
{
anchors_yolo.push_back(const_cast<float*>(tempAnchors)[i]);
}
if ((i >= each_yololayer_anchorsnum) && (i < (2 * each_yololayer_anchorsnum)))
{
anchors_yolo.push_back(const_cast<float*>(tempAnchors)[i]);
}
if (i >= (2 * each_yololayer_anchorsnum))
{
anchors_yolo.push_back(const_cast<float*>(tempAnchors)[i]);
}
}
return anchors_yolo;
}
IPluginV2Layer* addYoLoLayer(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, IConvolutionLayer* det0, IConvolutionLayer* det1, IConvolutionLayer* det2)
{
auto creator = getPluginRegistry()->getPluginCreator("YoloLayer_TRT", "1");
std::vector<float> anchors_yolo = getAnchors(weightMap);
PluginField pluginMultidata[4];
int NetData[4];
NetData[0] = Yolo::CLASS_NUM;
NetData[1] = Yolo::INPUT_W;
NetData[2] = Yolo::INPUT_H;
NetData[3] = Yolo::MAX_OUTPUT_BBOX_COUNT;
pluginMultidata[0].data = NetData;
pluginMultidata[0].length = 3;
pluginMultidata[0].name = "netdata";
pluginMultidata[0].type = PluginFieldType::kFLOAT32;
int scale[3] = { 8, 16, 32 };
int plugindata[3][8];
std::string names[3];
for (int k = 1; k < 4; k++)
{
plugindata[k - 1][0] = Yolo::INPUT_W / scale[k - 1];
plugindata[k - 1][1] = Yolo::INPUT_H / scale[k - 1];
for (int i = 2; i < 8; i++)
{
plugindata[k - 1][i] = int(anchors_yolo[(k - 1) * 6 + i - 2]);
}
pluginMultidata[k].data = plugindata[k - 1];
pluginMultidata[k].length = 8;
names[k - 1] = "yolodata" + std::to_string(k);
pluginMultidata[k].name = names[k - 1].c_str();
pluginMultidata[k].type = PluginFieldType::kFLOAT32;
}
PluginFieldCollection pluginData;
pluginData.nbFields = 4;
pluginData.fields = pluginMultidata;
IPluginV2 *pluginObj = creator->createPlugin("yololayer", &pluginData);
ITensor* inputTensors_yolo[] = { det2->getOutput(0), det1->getOutput(0), det0->getOutput(0) };
auto yolo = network->addPluginV2(inputTensors_yolo, 3, *pluginObj);
return yolo;
}
#endif
|