|
import time |
|
from lib.core.evaluate import ConfusionMatrix,SegmentationMetric |
|
from lib.core.general import non_max_suppression,check_img_size,scale_coords,xyxy2xywh,xywh2xyxy,box_iou,coco80_to_coco91_class,plot_images,ap_per_class,output_to_target |
|
from lib.utils.utils import time_synchronized |
|
from lib.utils import plot_img_and_mask,plot_one_box,show_seg_result |
|
import torch |
|
from threading import Thread |
|
import numpy as np |
|
from PIL import Image |
|
from torchvision import transforms |
|
from pathlib import Path |
|
import json |
|
import random |
|
import cv2 |
|
import os |
|
import math |
|
from torch.cuda import amp |
|
from tqdm import tqdm |
|
|
|
|
|
def train(cfg, train_loader, model, criterion, optimizer, scaler, epoch, num_batch, num_warmup, |
|
writer_dict, logger, device, rank=-1): |
|
""" |
|
train for one epoch |
|
|
|
Inputs: |
|
- config: configurations |
|
- train_loader: loder for data |
|
- model: |
|
- criterion: (function) calculate all the loss, return total_loss, head_losses |
|
- writer_dict: |
|
outputs(2,) |
|
output[0] len:3, [1,3,32,32,85], [1,3,16,16,85], [1,3,8,8,85] |
|
output[1] len:1, [2,256,256] |
|
output[2] len:1, [2,256,256] |
|
target(2,) |
|
target[0] [1,n,5] |
|
target[1] [2,256,256] |
|
target[2] [2,256,256] |
|
Returns: |
|
None |
|
|
|
""" |
|
batch_time = AverageMeter() |
|
data_time = AverageMeter() |
|
losses = AverageMeter() |
|
|
|
|
|
model.train() |
|
start = time.time() |
|
for i, (input, target, paths, shapes) in enumerate(train_loader): |
|
intermediate = time.time() |
|
|
|
num_iter = i + num_batch * (epoch - 1) |
|
|
|
if num_iter < num_warmup: |
|
|
|
lf = lambda x: ((1 + math.cos(x * math.pi / cfg.TRAIN.END_EPOCH)) / 2) * \ |
|
(1 - cfg.TRAIN.LRF) + cfg.TRAIN.LRF |
|
xi = [0, num_warmup] |
|
|
|
for j, x in enumerate(optimizer.param_groups): |
|
|
|
x['lr'] = np.interp(num_iter, xi, [cfg.TRAIN.WARMUP_BIASE_LR if j == 2 else 0.0, x['initial_lr'] * lf(epoch)]) |
|
if 'momentum' in x: |
|
x['momentum'] = np.interp(num_iter, xi, [cfg.TRAIN.WARMUP_MOMENTUM, cfg.TRAIN.MOMENTUM]) |
|
|
|
data_time.update(time.time() - start) |
|
if not cfg.DEBUG: |
|
input = input.to(device, non_blocking=True) |
|
assign_target = [] |
|
for tgt in target: |
|
assign_target.append(tgt.to(device)) |
|
target = assign_target |
|
with amp.autocast(enabled=device.type != 'cpu'): |
|
outputs = model(input) |
|
total_loss, head_losses = criterion(outputs, target, shapes,model) |
|
|
|
|
|
|
|
optimizer.zero_grad() |
|
scaler.scale(total_loss).backward() |
|
scaler.step(optimizer) |
|
scaler.update() |
|
|
|
if rank in [-1, 0]: |
|
|
|
losses.update(total_loss.item(), input.size(0)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
batch_time.update(time.time() - start) |
|
end = time.time() |
|
if i % cfg.PRINT_FREQ == 0: |
|
msg = 'Epoch: [{0}][{1}/{2}]\t' \ |
|
'Time {batch_time.val:.3f}s ({batch_time.avg:.3f}s)\t' \ |
|
'Speed {speed:.1f} samples/s\t' \ |
|
'Data {data_time.val:.3f}s ({data_time.avg:.3f}s)\t' \ |
|
'Loss {loss.val:.5f} ({loss.avg:.5f})'.format( |
|
epoch, i, len(train_loader), batch_time=batch_time, |
|
speed=input.size(0)/batch_time.val, |
|
data_time=data_time, loss=losses) |
|
logger.info(msg) |
|
|
|
writer = writer_dict['writer'] |
|
global_steps = writer_dict['train_global_steps'] |
|
writer.add_scalar('train_loss', losses.val, global_steps) |
|
|
|
writer_dict['train_global_steps'] = global_steps + 1 |
|
|
|
|
|
def validate(epoch,config, val_loader, val_dataset, model, criterion, output_dir, |
|
tb_log_dir, writer_dict=None, logger=None, device='cpu', rank=-1): |
|
""" |
|
validata |
|
|
|
Inputs: |
|
- config: configurations |
|
- train_loader: loder for data |
|
- model: |
|
- criterion: (function) calculate all the loss, return |
|
- writer_dict: |
|
|
|
Return: |
|
None |
|
""" |
|
|
|
max_stride = 32 |
|
weights = None |
|
|
|
save_dir = output_dir + os.path.sep + 'visualization' |
|
if not os.path.exists(save_dir): |
|
os.mkdir(save_dir) |
|
|
|
|
|
_, imgsz = [check_img_size(x, s=max_stride) for x in config.MODEL.IMAGE_SIZE] |
|
batch_size = config.TRAIN.BATCH_SIZE_PER_GPU * len(config.GPUS) |
|
test_batch_size = config.TEST.BATCH_SIZE_PER_GPU * len(config.GPUS) |
|
training = False |
|
is_coco = False |
|
save_conf=False |
|
verbose=False |
|
save_hybrid=False |
|
log_imgs,wandb = min(16,100), None |
|
|
|
nc = 1 |
|
iouv = torch.linspace(0.5,0.95,10).to(device) |
|
niou = iouv.numel() |
|
|
|
try: |
|
import wandb |
|
except ImportError: |
|
wandb = None |
|
log_imgs = 0 |
|
|
|
seen = 0 |
|
confusion_matrix = ConfusionMatrix(nc=model.nc) |
|
da_metric = SegmentationMetric(config.num_seg_class) |
|
ll_metric = SegmentationMetric(2) |
|
|
|
names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)} |
|
colors = [[random.randint(0, 255) for _ in range(3)] for _ in names] |
|
coco91class = coco80_to_coco91_class() |
|
|
|
s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Targets', 'P', 'R', '[email protected]', '[email protected]:.95') |
|
p, r, f1, mp, mr, map50, map, t_inf, t_nms = 0., 0., 0., 0., 0., 0., 0., 0., 0. |
|
|
|
losses = AverageMeter() |
|
|
|
da_acc_seg = AverageMeter() |
|
da_IoU_seg = AverageMeter() |
|
da_mIoU_seg = AverageMeter() |
|
|
|
ll_acc_seg = AverageMeter() |
|
ll_IoU_seg = AverageMeter() |
|
ll_mIoU_seg = AverageMeter() |
|
|
|
T_inf = AverageMeter() |
|
T_nms = AverageMeter() |
|
|
|
|
|
model.eval() |
|
jdict, stats, ap, ap_class, wandb_images = [], [], [], [], [] |
|
|
|
for batch_i, (img, target, paths, shapes) in tqdm(enumerate(val_loader), total=len(val_loader)): |
|
if not config.DEBUG: |
|
img = img.to(device, non_blocking=True) |
|
assign_target = [] |
|
for tgt in target: |
|
assign_target.append(tgt.to(device)) |
|
target = assign_target |
|
nb, _, height, width = img.shape |
|
|
|
with torch.no_grad(): |
|
pad_w, pad_h = shapes[0][1][1] |
|
pad_w = int(pad_w) |
|
pad_h = int(pad_h) |
|
ratio = shapes[0][1][0][0] |
|
|
|
t = time_synchronized() |
|
det_out, da_seg_out, ll_seg_out= model(img) |
|
t_inf = time_synchronized() - t |
|
if batch_i > 0: |
|
T_inf.update(t_inf/img.size(0),img.size(0)) |
|
|
|
inf_out,train_out = det_out |
|
|
|
|
|
_,da_predict=torch.max(da_seg_out, 1) |
|
_,da_gt=torch.max(target[1], 1) |
|
da_predict = da_predict[:, pad_h:height-pad_h, pad_w:width-pad_w] |
|
da_gt = da_gt[:, pad_h:height-pad_h, pad_w:width-pad_w] |
|
|
|
da_metric.reset() |
|
da_metric.addBatch(da_predict.cpu(), da_gt.cpu()) |
|
da_acc = da_metric.pixelAccuracy() |
|
da_IoU = da_metric.IntersectionOverUnion() |
|
da_mIoU = da_metric.meanIntersectionOverUnion() |
|
|
|
da_acc_seg.update(da_acc,img.size(0)) |
|
da_IoU_seg.update(da_IoU,img.size(0)) |
|
da_mIoU_seg.update(da_mIoU,img.size(0)) |
|
|
|
|
|
_,ll_predict=torch.max(ll_seg_out, 1) |
|
_,ll_gt=torch.max(target[2], 1) |
|
ll_predict = ll_predict[:, pad_h:height-pad_h, pad_w:width-pad_w] |
|
ll_gt = ll_gt[:, pad_h:height-pad_h, pad_w:width-pad_w] |
|
|
|
ll_metric.reset() |
|
ll_metric.addBatch(ll_predict.cpu(), ll_gt.cpu()) |
|
ll_acc = ll_metric.lineAccuracy() |
|
ll_IoU = ll_metric.IntersectionOverUnion() |
|
ll_mIoU = ll_metric.meanIntersectionOverUnion() |
|
|
|
ll_acc_seg.update(ll_acc,img.size(0)) |
|
ll_IoU_seg.update(ll_IoU,img.size(0)) |
|
ll_mIoU_seg.update(ll_mIoU,img.size(0)) |
|
|
|
total_loss, head_losses = criterion((train_out,da_seg_out, ll_seg_out), target, shapes,model) |
|
losses.update(total_loss.item(), img.size(0)) |
|
|
|
|
|
t = time_synchronized() |
|
target[0][:, 2:] *= torch.Tensor([width, height, width, height]).to(device) |
|
lb = [target[0][target[0][:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] |
|
output = non_max_suppression(inf_out, conf_thres= config.TEST.NMS_CONF_THRESHOLD, iou_thres=config.TEST.NMS_IOU_THRESHOLD, labels=lb) |
|
|
|
|
|
t_nms = time_synchronized() - t |
|
if batch_i > 0: |
|
T_nms.update(t_nms/img.size(0),img.size(0)) |
|
|
|
if config.TEST.PLOTS: |
|
if batch_i == 0: |
|
for i in range(test_batch_size): |
|
img_test = cv2.imread(paths[i]) |
|
da_seg_mask = da_seg_out[i][:, pad_h:height-pad_h, pad_w:width-pad_w].unsqueeze(0) |
|
da_seg_mask = torch.nn.functional.interpolate(da_seg_mask, scale_factor=int(1/ratio), mode='bilinear') |
|
_, da_seg_mask = torch.max(da_seg_mask, 1) |
|
|
|
da_gt_mask = target[1][i][:, pad_h:height-pad_h, pad_w:width-pad_w].unsqueeze(0) |
|
da_gt_mask = torch.nn.functional.interpolate(da_gt_mask, scale_factor=int(1/ratio), mode='bilinear') |
|
_, da_gt_mask = torch.max(da_gt_mask, 1) |
|
|
|
da_seg_mask = da_seg_mask.int().squeeze().cpu().numpy() |
|
da_gt_mask = da_gt_mask.int().squeeze().cpu().numpy() |
|
|
|
|
|
img_test1 = img_test.copy() |
|
_ = show_seg_result(img_test, da_seg_mask, i,epoch,save_dir) |
|
_ = show_seg_result(img_test1, da_gt_mask, i, epoch, save_dir, is_gt=True) |
|
|
|
img_ll = cv2.imread(paths[i]) |
|
ll_seg_mask = ll_seg_out[i][:, pad_h:height-pad_h, pad_w:width-pad_w].unsqueeze(0) |
|
ll_seg_mask = torch.nn.functional.interpolate(ll_seg_mask, scale_factor=int(1/ratio), mode='bilinear') |
|
_, ll_seg_mask = torch.max(ll_seg_mask, 1) |
|
|
|
ll_gt_mask = target[2][i][:, pad_h:height-pad_h, pad_w:width-pad_w].unsqueeze(0) |
|
ll_gt_mask = torch.nn.functional.interpolate(ll_gt_mask, scale_factor=int(1/ratio), mode='bilinear') |
|
_, ll_gt_mask = torch.max(ll_gt_mask, 1) |
|
|
|
ll_seg_mask = ll_seg_mask.int().squeeze().cpu().numpy() |
|
ll_gt_mask = ll_gt_mask.int().squeeze().cpu().numpy() |
|
|
|
|
|
img_ll1 = img_ll.copy() |
|
_ = show_seg_result(img_ll, ll_seg_mask, i,epoch,save_dir, is_ll=True) |
|
_ = show_seg_result(img_ll1, ll_gt_mask, i, epoch, save_dir, is_ll=True, is_gt=True) |
|
|
|
img_det = cv2.imread(paths[i]) |
|
img_gt = img_det.copy() |
|
det = output[i].clone() |
|
if len(det): |
|
det[:,:4] = scale_coords(img[i].shape[1:],det[:,:4],img_det.shape).round() |
|
for *xyxy,conf,cls in reversed(det): |
|
|
|
label_det_pred = f'{names[int(cls)]} {conf:.2f}' |
|
plot_one_box(xyxy, img_det , label=label_det_pred, color=colors[int(cls)], line_thickness=3) |
|
cv2.imwrite(save_dir+"/batch_{}_{}_det_pred.png".format(epoch,i),img_det) |
|
|
|
labels = target[0][target[0][:, 0] == i, 1:] |
|
|
|
labels[:,1:5]=xywh2xyxy(labels[:,1:5]) |
|
if len(labels): |
|
labels[:,1:5]=scale_coords(img[i].shape[1:],labels[:,1:5],img_gt.shape).round() |
|
for cls,x1,y1,x2,y2 in labels: |
|
|
|
|
|
label_det_gt = f'{names[int(cls)]}' |
|
xyxy = (x1,y1,x2,y2) |
|
plot_one_box(xyxy, img_gt , label=label_det_gt, color=colors[int(cls)], line_thickness=3) |
|
cv2.imwrite(save_dir+"/batch_{}_{}_det_gt.png".format(epoch,i),img_gt) |
|
|
|
|
|
|
|
|
|
for si, pred in enumerate(output): |
|
labels = target[0][target[0][:, 0] == si, 1:] |
|
nl = len(labels) |
|
tcls = labels[:, 0].tolist() if nl else [] |
|
path = Path(paths[si]) |
|
seen += 1 |
|
|
|
if len(pred) == 0: |
|
if nl: |
|
stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls)) |
|
continue |
|
|
|
|
|
predn = pred.clone() |
|
scale_coords(img[si].shape[1:], predn[:, :4], shapes[si][0], shapes[si][1]) |
|
|
|
|
|
if config.TEST.SAVE_TXT: |
|
gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0]] |
|
for *xyxy, conf, cls in predn.tolist(): |
|
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() |
|
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) |
|
with open(save_dir / 'labels' / (path.stem + '.txt'), 'a') as f: |
|
f.write(('%g ' * len(line)).rstrip() % line + '\n') |
|
|
|
|
|
if config.TEST.PLOTS and len(wandb_images) < log_imgs: |
|
box_data = [{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]}, |
|
"class_id": int(cls), |
|
"box_caption": "%s %.3f" % (names[cls], conf), |
|
"scores": {"class_score": conf}, |
|
"domain": "pixel"} for *xyxy, conf, cls in pred.tolist()] |
|
boxes = {"predictions": {"box_data": box_data, "class_labels": names}} |
|
wandb_images.append(wandb.Image(img[si], boxes=boxes, caption=path.name)) |
|
|
|
|
|
if config.TEST.SAVE_JSON: |
|
|
|
image_id = int(path.stem) if path.stem.isnumeric() else path.stem |
|
box = xyxy2xywh(predn[:, :4]) |
|
box[:, :2] -= box[:, 2:] / 2 |
|
for p, b in zip(pred.tolist(), box.tolist()): |
|
jdict.append({'image_id': image_id, |
|
'category_id': coco91class[int(p[5])] if is_coco else int(p[5]), |
|
'bbox': [round(x, 3) for x in b], |
|
'score': round(p[4], 5)}) |
|
|
|
|
|
|
|
correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device) |
|
if nl: |
|
detected = [] |
|
tcls_tensor = labels[:, 0] |
|
|
|
|
|
tbox = xywh2xyxy(labels[:, 1:5]) |
|
scale_coords(img[si].shape[1:], tbox, shapes[si][0], shapes[si][1]) |
|
if config.TEST.PLOTS: |
|
confusion_matrix.process_batch(pred, torch.cat((labels[:, 0:1], tbox), 1)) |
|
|
|
|
|
for cls in torch.unique(tcls_tensor): |
|
ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(-1) |
|
pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(-1) |
|
|
|
|
|
if pi.shape[0]: |
|
|
|
|
|
ious, i = box_iou(predn[pi, :4], tbox[ti]).max(1) |
|
|
|
detected_set = set() |
|
for j in (ious > iouv[0]).nonzero(as_tuple=False): |
|
d = ti[i[j]] |
|
if d.item() not in detected_set: |
|
detected_set.add(d.item()) |
|
detected.append(d) |
|
correct[pi[j]] = ious[j] > iouv |
|
if len(detected) == nl: |
|
break |
|
|
|
|
|
stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls)) |
|
|
|
if config.TEST.PLOTS and batch_i < 3: |
|
f = save_dir +'/'+ f'test_batch{batch_i}_labels.jpg' |
|
|
|
f = save_dir +'/'+ f'test_batch{batch_i}_pred.jpg' |
|
|
|
|
|
|
|
|
|
stats = [np.concatenate(x, 0) for x in zip(*stats)] |
|
|
|
map70 = None |
|
map75 = None |
|
if len(stats) and stats[0].any(): |
|
p, r, ap, f1, ap_class = ap_per_class(*stats, plot=False, save_dir=save_dir, names=names) |
|
ap50, ap70, ap75,ap = ap[:, 0], ap[:,4], ap[:,5],ap.mean(1) |
|
mp, mr, map50, map70, map75, map = p.mean(), r.mean(), ap50.mean(), ap70.mean(),ap75.mean(),ap.mean() |
|
nt = np.bincount(stats[3].astype(np.int64), minlength=nc) |
|
else: |
|
nt = torch.zeros(1) |
|
|
|
|
|
pf = '%20s' + '%12.3g' * 6 |
|
print(pf % ('all', seen, nt.sum(), mp, mr, map50, map)) |
|
|
|
|
|
|
|
|
|
if (verbose or (nc <= 20 and not training)) and nc > 1 and len(stats): |
|
for i, c in enumerate(ap_class): |
|
print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i])) |
|
|
|
|
|
t = tuple(x / seen * 1E3 for x in (t_inf, t_nms, t_inf + t_nms)) + (imgsz, imgsz, batch_size) |
|
if not training: |
|
print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t) |
|
|
|
|
|
if config.TEST.PLOTS: |
|
confusion_matrix.plot(save_dir=save_dir, names=list(names.values())) |
|
if wandb and wandb.run: |
|
wandb.log({"Images": wandb_images}) |
|
wandb.log({"Validation": [wandb.Image(str(f), caption=f.name) for f in sorted(save_dir.glob('test*.jpg'))]}) |
|
|
|
|
|
if config.TEST.SAVE_JSON and len(jdict): |
|
w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' |
|
anno_json = '../coco/annotations/instances_val2017.json' |
|
pred_json = str(save_dir / f"{w}_predictions.json") |
|
print('\nEvaluating pycocotools mAP... saving %s...' % pred_json) |
|
with open(pred_json, 'w') as f: |
|
json.dump(jdict, f) |
|
|
|
try: |
|
from pycocotools.coco import COCO |
|
from pycocotools.cocoeval import COCOeval |
|
|
|
anno = COCO(anno_json) |
|
pred = anno.loadRes(pred_json) |
|
eval = COCOeval(anno, pred, 'bbox') |
|
if is_coco: |
|
eval.params.imgIds = [int(Path(x).stem) for x in val_loader.dataset.img_files] |
|
eval.evaluate() |
|
eval.accumulate() |
|
eval.summarize() |
|
map, map50 = eval.stats[:2] |
|
except Exception as e: |
|
print(f'pycocotools unable to run: {e}') |
|
|
|
|
|
if not training: |
|
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if config.TEST.SAVE_TXT else '' |
|
print(f"Results saved to {save_dir}{s}") |
|
model.float() |
|
maps = np.zeros(nc) + map |
|
for i, c in enumerate(ap_class): |
|
maps[c] = ap[i] |
|
|
|
da_segment_result = (da_acc_seg.avg,da_IoU_seg.avg,da_mIoU_seg.avg) |
|
ll_segment_result = (ll_acc_seg.avg,ll_IoU_seg.avg,ll_mIoU_seg.avg) |
|
|
|
|
|
|
|
detect_result = np.asarray([mp, mr, map50, map]) |
|
|
|
|
|
t = [T_inf.avg, T_nms.avg] |
|
return da_segment_result, ll_segment_result, detect_result, losses.avg, maps, t |
|
|
|
|
|
|
|
class AverageMeter(object): |
|
"""Computes and stores the average and current value""" |
|
def __init__(self): |
|
self.reset() |
|
|
|
def reset(self): |
|
self.val = 0 |
|
self.avg = 0 |
|
self.sum = 0 |
|
self.count = 0 |
|
|
|
def update(self, val, n=1): |
|
self.val = val |
|
self.sum += val * n |
|
self.count += n |
|
self.avg = self.sum / self.count if self.count != 0 else 0 |