Object Detection
YOLOP / toolkits /deploy /yolov5.hpp
Riser's picture
First model version
67bb36a
#ifndef YOLOV5_H_
#define YOLOV5_H_
#include <chrono>
#include "cuda_utils.h"
#include "logging.h"
#include "utils.h"
#include "calibrator.h"
#define USE_FP16 // set USE_INT8 or USE_FP16 or USE_FP32
#define DEVICE 0 // GPU id
#define NMS_THRESH 0.45
#define CONF_THRESH 0.25
#define BATCH_SIZE 1
// stuff we know about the network and the input/output blobs
static const int INPUT_H = Yolo::INPUT_H;
static const int INPUT_W = Yolo::INPUT_W;
static const int IMG_H = Yolo::IMG_H;
static const int IMG_W = Yolo::IMG_W;
static const int CLASS_NUM = Yolo::CLASS_NUM;
static const int OUTPUT_SIZE = Yolo::MAX_OUTPUT_BBOX_COUNT * sizeof(Yolo::Detection) / sizeof(float) + 1; // we assume the yololayer outputs no more than MAX_OUTPUT_BBOX_COUNT boxes that conf >= 0.1
const char* INPUT_BLOB_NAME = "data";
const char* OUTPUT_DET_NAME = "det";
const char* OUTPUT_SEG_NAME = "seg";
const char* OUTPUT_LANE_NAME = "lane";
static Logger gLogger;
ICudaEngine* build_engine(unsigned int maxBatchSize, IBuilder* builder, IBuilderConfig* config, DataType dt, float& gd, float& gw, std::string& wts_name) {
INetworkDefinition* network = builder->createNetworkV2(0U);
// Create input tensor of shape {3, INPUT_H, INPUT_W} with name INPUT_BLOB_NAME
ITensor* data = network->addInput(INPUT_BLOB_NAME, dt, Dims3{ 3, INPUT_H, INPUT_W });
assert(data);
// auto shuffle = network->addShuffle(*data);
// shuffle->setReshapeDimensions(Dims3{ 3, INPUT_H, INPUT_W });
// shuffle->setFirstTranspose(Permutation{ 2, 0, 1 });
std::map<std::string, Weights> weightMap = loadWeights(wts_name);
Weights emptywts{ DataType::kFLOAT, nullptr, 0 };
// yolov5 backbone
// auto focus0 = focus(network, weightMap, *shuffle->getOutput(0), 3, 32, 3, "model.0");
auto focus0 = focus(network, weightMap, *data, 3, 32, 3, "model.0");
auto conv1 = convBlock(network, weightMap, *focus0->getOutput(0), 64, 3, 2, 1, "model.1");
auto bottleneck_CSP2 = bottleneckCSP(network, weightMap, *conv1->getOutput(0), 64, 64, 1, true, 1, 0.5, "model.2");
auto conv3 = convBlock(network, weightMap, *bottleneck_CSP2->getOutput(0), 128, 3, 2, 1, "model.3");
auto bottleneck_csp4 = bottleneckCSP(network, weightMap, *conv3->getOutput(0), 128, 128, 3, true, 1, 0.5, "model.4");
auto conv5 = convBlock(network, weightMap, *bottleneck_csp4->getOutput(0), 256, 3, 2, 1, "model.5");
auto bottleneck_csp6 = bottleneckCSP(network, weightMap, *conv5->getOutput(0), 256, 256, 3, true, 1, 0.5, "model.6");
auto conv7 = convBlock(network, weightMap, *bottleneck_csp6->getOutput(0), 512, 3, 2, 1, "model.7");
auto spp8 = SPP(network, weightMap, *conv7->getOutput(0), 512, 512, 5, 9, 13, "model.8");
// yolov5 head
auto bottleneck_csp9 = bottleneckCSP(network, weightMap, *spp8->getOutput(0), 512, 512, 1, false, 1, 0.5, "model.9");
auto conv10 = convBlock(network, weightMap, *bottleneck_csp9->getOutput(0), 256, 1, 1, 1, "model.10");
float *deval = reinterpret_cast<float*>(malloc(sizeof(float) * 256 * 2 * 2));
for (int i = 0; i < 256 * 2 * 2; i++) {
deval[i] = 1.0;
}
Weights deconvwts11{ DataType::kFLOAT, deval, 256 * 2 * 2 };
IDeconvolutionLayer* deconv11 = network->addDeconvolutionNd(*conv10->getOutput(0), 256, DimsHW{ 2, 2 }, deconvwts11, emptywts);
deconv11->setStrideNd(DimsHW{ 2, 2 });
deconv11->setNbGroups(256);
weightMap["deconv11"] = deconvwts11;
ITensor* inputTensors12[] = { deconv11->getOutput(0), bottleneck_csp6->getOutput(0) };
auto cat12 = network->addConcatenation(inputTensors12, 2);
auto bottleneck_csp13 = bottleneckCSP(network, weightMap, *cat12->getOutput(0), 512, 256, 1, false, 1, 0.5, "model.13");
auto conv14 = convBlock(network, weightMap, *bottleneck_csp13->getOutput(0), 128, 1, 1, 1, "model.14");
Weights deconvwts15{ DataType::kFLOAT, deval, 128 * 2 * 2 };
IDeconvolutionLayer* deconv15 = network->addDeconvolutionNd(*conv14->getOutput(0), 128, DimsHW{ 2, 2 }, deconvwts15, emptywts);
deconv15->setStrideNd(DimsHW{ 2, 2 });
deconv15->setNbGroups(128);
ITensor* inputTensors16[] = { deconv15->getOutput(0), bottleneck_csp4->getOutput(0) };
auto cat16 = network->addConcatenation(inputTensors16, 2);
auto bottleneck_csp17 = bottleneckCSP(network, weightMap, *cat16->getOutput(0), 256, 128, 1, false, 1, 0.5, "model.17");
IConvolutionLayer* det0 = network->addConvolutionNd(*bottleneck_csp17->getOutput(0), 3 * (Yolo::CLASS_NUM + 5), DimsHW{ 1, 1 }, weightMap["model.24.m.0.weight"], weightMap["model.24.m.0.bias"]);
auto conv18 = convBlock(network, weightMap, *bottleneck_csp17->getOutput(0), 128, 3, 2, 1, "model.18");
ITensor* inputTensors19[] = { conv18->getOutput(0), conv14->getOutput(0) };
auto cat19 = network->addConcatenation(inputTensors19, 2);
auto bottleneck_csp20 = bottleneckCSP(network, weightMap, *cat19->getOutput(0), 256, 256, 1, false, 1, 0.5, "model.20");
IConvolutionLayer* det1 = network->addConvolutionNd(*bottleneck_csp20->getOutput(0), 3 * (Yolo::CLASS_NUM + 5), DimsHW{ 1, 1 }, weightMap["model.24.m.1.weight"], weightMap["model.24.m.1.bias"]);
auto conv21 = convBlock(network, weightMap, *bottleneck_csp20->getOutput(0), 256, 3, 2, 1, "model.21");
ITensor* inputTensors22[] = { conv21->getOutput(0), conv10->getOutput(0) };
auto cat22 = network->addConcatenation(inputTensors22, 2);
auto bottleneck_csp23 = bottleneckCSP(network, weightMap, *cat22->getOutput(0), 512, 512, 1, false, 1, 0.5, "model.23");
IConvolutionLayer* det2 = network->addConvolutionNd(*bottleneck_csp23->getOutput(0), 3 * (Yolo::CLASS_NUM + 5), DimsHW{ 1, 1 }, weightMap["model.24.m.2.weight"], weightMap["model.24.m.2.bias"]);
auto detect24 = addYoLoLayer(network, weightMap, det0, det1, det2);
detect24->getOutput(0)->setName(OUTPUT_DET_NAME);
auto conv25 = convBlock(network, weightMap, *cat16->getOutput(0), 64, 3, 1, 1, "model.25");
// upsample 26
Weights deconvwts26{ DataType::kFLOAT, deval, 64 * 2 * 2 };
IDeconvolutionLayer* deconv26 = network->addDeconvolutionNd(*conv25->getOutput(0), 64, DimsHW{ 2, 2 }, deconvwts26, emptywts);
deconv26->setStrideNd(DimsHW{ 2, 2 });
deconv26->setNbGroups(64);
ITensor* inputTensors27[] = { deconv26->getOutput(0), bottleneck_CSP2->getOutput(0) };
auto cat27 = network->addConcatenation(inputTensors27, 2);
auto bottleneck_csp28 = bottleneckCSP(network, weightMap, *cat27->getOutput(0), 128, 64, 1, false, 1, 0.5, "model.28");
auto conv29 = convBlock(network, weightMap, *bottleneck_csp28->getOutput(0), 32, 3, 1, 1, "model.29");
// upsample 30
Weights deconvwts30{ DataType::kFLOAT, deval, 32 * 2 * 2 };
IDeconvolutionLayer* deconv30 = network->addDeconvolutionNd(*conv29->getOutput(0), 32, DimsHW{ 2, 2 }, deconvwts30, emptywts);
deconv30->setStrideNd(DimsHW{ 2, 2 });
deconv30->setNbGroups(32);
auto conv31 = convBlock(network, weightMap, *deconv30->getOutput(0), 16, 3, 1, 1, "model.31");
auto bottleneck_csp32 = bottleneckCSP(network, weightMap, *conv31->getOutput(0), 16, 8, 1, false, 1, 0.5, "model.32");
// upsample33
Weights deconvwts33{ DataType::kFLOAT, deval, 8 * 2 * 2 };
IDeconvolutionLayer* deconv33 = network->addDeconvolutionNd(*bottleneck_csp32->getOutput(0), 8, DimsHW{ 2, 2 }, deconvwts33, emptywts);
deconv33->setStrideNd(DimsHW{ 2, 2 });
deconv33->setNbGroups(8);
auto conv34 = convBlock(network, weightMap, *deconv33->getOutput(0), 3, 3, 1, 1, "model.34");
// segmentation output
ISliceLayer *slicelayer = network->addSlice(*conv34->getOutput(0), Dims3{ 0, (Yolo::INPUT_H - Yolo::IMG_H) / 2, 0 }, Dims3{ 3, Yolo::IMG_H, Yolo::IMG_W }, Dims3{ 1, 1, 1 });
auto segout = network->addTopK(*slicelayer->getOutput(0), TopKOperation::kMAX, 1, 1);
segout->getOutput(1)->setName(OUTPUT_SEG_NAME);
auto conv35 = convBlock(network, weightMap, *cat16->getOutput(0), 64, 3, 1, 1, "model.35");
// upsample36
Weights deconvwts36{ DataType::kFLOAT, deval, 64 * 2 * 2 };
IDeconvolutionLayer* deconv36 = network->addDeconvolutionNd(*conv35->getOutput(0), 64, DimsHW{ 2, 2 }, deconvwts36, emptywts);
deconv36->setStrideNd(DimsHW{ 2, 2 });
deconv36->setNbGroups(64);
ITensor* inputTensors37[] = { deconv36->getOutput(0), bottleneck_CSP2->getOutput(0) };
auto cat37 = network->addConcatenation(inputTensors37, 2);
auto bottleneck_csp38 = bottleneckCSP(network, weightMap, *cat37->getOutput(0), 128, 64, 1, false, 1, 0.5, "model.38");
auto conv39 = convBlock(network, weightMap, *bottleneck_csp38->getOutput(0), 32, 3, 1, 1, "model.39");
// upsample40
Weights deconvwts40{ DataType::kFLOAT, deval, 32 * 2 * 2 };
IDeconvolutionLayer* deconv40 = network->addDeconvolutionNd(*conv39->getOutput(0), 32, DimsHW{ 2, 2 }, deconvwts40, emptywts);
deconv40->setStrideNd(DimsHW{ 2, 2 });
deconv40->setNbGroups(32);
auto conv41 = convBlock(network, weightMap, *deconv40->getOutput(0), 16, 3, 1, 1, "model.41");
auto bottleneck_csp42 = bottleneckCSP(network, weightMap, *conv41->getOutput(0), 16, 8, 1, false, 1, 0.5, "model.42");
// upsample43
Weights deconvwts43{ DataType::kFLOAT, deval, 8 * 2 * 2 };
IDeconvolutionLayer* deconv43 = network->addDeconvolutionNd(*bottleneck_csp42->getOutput(0), 8, DimsHW{ 2, 2 }, deconvwts43, emptywts);
deconv43->setStrideNd(DimsHW{ 2, 2 });
deconv43->setNbGroups(8);
auto conv44 = convBlock(network, weightMap, *deconv43->getOutput(0), 2, 3, 1, 1, "model.44");
// lane-det output
ISliceLayer *laneSlice = network->addSlice(*conv44->getOutput(0), Dims3{ 0, (Yolo::INPUT_H - Yolo::IMG_H) / 2, 0 }, Dims3{ 2, Yolo::IMG_H, Yolo::IMG_W }, Dims3{ 1, 1, 1 });
auto laneout = network->addTopK(*laneSlice->getOutput(0), TopKOperation::kMAX, 1, 1);
laneout->getOutput(1)->setName(OUTPUT_LANE_NAME);
// // std::cout << std::to_string(slicelayer->getOutput(0)->getDimensions().d[0]) << std::endl;
// // ISliceLayer *tmp1 = network->addSlice(*slicelayer->getOutput(0), Dims3{ 0, 0, 0 }, Dims3{ 1, (Yolo::INPUT_H - 2 * Yolo::PAD_H), Yolo::INPUT_W }, Dims3{ 1, 1, 1 });
// // ISliceLayer *tmp2 = network->addSlice(*slicelayer->getOutput(0), Dims3{ 1, 0, 0 }, Dims3{ 1, (Yolo::INPUT_H - 2 * Yolo::PAD_H), Yolo::INPUT_W }, Dims3{ 1, 1, 1 });
// // auto segout = network->addElementWise(*tmp1->getOutput(0), *tmp2->getOutput(0), ElementWiseOperation::kLESS);
// std::cout << std::to_string(conv44->getOutput(0)->getDimensions().d[0]) << std::endl;
// std::cout << std::to_string(conv44->getOutput(0)->getDimensions().d[1]) << std::endl;
// std::cout << std::to_string(conv44->getOutput(0)->getDimensions().d[2]) << std::endl;
// assert(false);
// // segout->setOutputType(1, DataType::kFLOAT);
// segout->getOutput(1)->setName(OUTPUT_SEG_NAME);
// // std::cout << std::to_string(segout->getOutput(1)->getDimensions().d[0]) << std::endl;
// detection output
network->markOutput(*detect24->getOutput(0));
// segmentation output
network->markOutput(*segout->getOutput(1));
// lane output
network->markOutput(*laneout->getOutput(1));
assert(false);
// Build engine
builder->setMaxBatchSize(maxBatchSize);
config->setMaxWorkspaceSize(2L * (1L << 30)); // 2GB
#if defined(USE_FP16)
config->setFlag(BuilderFlag::kFP16);
// #elif defined(USE_INT8)
// std::cout << "Your platform support int8: " << (builder->platformHasFastInt8() ? "true" : "false") << std::endl;
// assert(builder->platformHasFastInt8());
// config->setFlag(BuilderFlag::kINT8);
// Int8EntropyCalibrator2* calibrator = new Int8EntropyCalibrator2(1, INPUT_W, INPUT_H, "./coco_calib/", "int8calib.table", INPUT_BLOB_NAME);
// config->setInt8Calibrator(calibrator);
#endif
std::cout << "Building engine, please wait for a while..." << std::endl;
ICudaEngine* engine = builder->buildEngineWithConfig(*network, *config);
std::cout << "Build engine successfully!" << std::endl;
// Don't need the network any more
network->destroy();
// Release host memory
for (auto& mem : weightMap)
{
free((void*)(mem.second.values));
}
return engine;
}
void APIToModel(unsigned int maxBatchSize, IHostMemory** modelStream, float& gd, float& gw, std::string& wts_name) {
// Create builder
IBuilder* builder = createInferBuilder(gLogger);
IBuilderConfig* config = builder->createBuilderConfig();
// Create model to populate the network, then set the outputs and create an engine
ICudaEngine* engine = build_engine(maxBatchSize, builder, config, DataType::kFLOAT, gd, gw, wts_name);
assert(engine != nullptr);
// Serialize the engine
(*modelStream) = engine->serialize();
// Close everything down
engine->destroy();
builder->destroy();
config->destroy();
}
void doInference(IExecutionContext& context, cudaStream_t& stream, void **buffers, float* det_output, int* seg_output, int* lane_output, int batchSize) {
// DMA input batch data to device, infer on the batch asynchronously, and DMA output back to host
// CUDA_CHECK(cudaMemcpyAsync(buffers[0], input, batchSize * 3 * INPUT_H * INPUT_W * sizeof(float), cudaMemcpyHostToDevice, stream));
context.enqueue(batchSize, buffers, stream, nullptr);
CUDA_CHECK(cudaMemcpyAsync(det_output, buffers[1], batchSize * OUTPUT_SIZE * sizeof(float), cudaMemcpyDeviceToHost, stream));
CUDA_CHECK(cudaMemcpyAsync(seg_output, buffers[2], batchSize * IMG_H * IMG_W * sizeof(int), cudaMemcpyDeviceToHost, stream));
CUDA_CHECK(cudaMemcpyAsync(lane_output, buffers[3], batchSize * IMG_H * IMG_W * sizeof(int), cudaMemcpyDeviceToHost, stream));
cudaStreamSynchronize(stream);
}
void doInferenceCpu(IExecutionContext& context, cudaStream_t& stream, void **buffers, float* input, float* det_output, int* seg_output, int* lane_output, int batchSize) {
// DMA input batch data to device, infer on the batch asynchronously, and DMA output back to host
CUDA_CHECK(cudaMemcpyAsync(buffers[0], input, batchSize * 3 * INPUT_H * INPUT_W * sizeof(float), cudaMemcpyHostToDevice, stream));
context.enqueue(batchSize, buffers, stream, nullptr);
CUDA_CHECK(cudaMemcpyAsync(det_output, buffers[1], batchSize * OUTPUT_SIZE * sizeof(float), cudaMemcpyDeviceToHost, stream));
CUDA_CHECK(cudaMemcpyAsync(seg_output, buffers[2], batchSize * IMG_H * IMG_W * sizeof(int), cudaMemcpyDeviceToHost, stream));
CUDA_CHECK(cudaMemcpyAsync(lane_output, buffers[3], batchSize * IMG_H * IMG_W * sizeof(int), cudaMemcpyDeviceToHost, stream));
cudaStreamSynchronize(stream);
}
bool parse_args(int argc, char** argv, std::string& wts, std::string& engine, float& gd, float& gw, std::string& img_dir) {
if (argc < 4) return false;
if (std::string(argv[1]) == "-s" && (argc == 5 || argc == 7)) {
wts = std::string(argv[2]);
engine = std::string(argv[3]);
auto net = std::string(argv[4]);
if (net == "s") {
gd = 0.33;
gw = 0.50;
} else if (net == "m") {
gd = 0.67;
gw = 0.75;
} else if (net == "l") {
gd = 1.0;
gw = 1.0;
} else if (net == "x") {
gd = 1.33;
gw = 1.25;
} else if (net == "c" && argc == 7) {
gd = atof(argv[5]);
gw = atof(argv[6]);
} else {
return false;
}
} else if (std::string(argv[1]) == "-d" && argc == 4) {
engine = std::string(argv[2]);
img_dir = std::string(argv[3]);
} else {
return false;
}
return true;
}
#endif