|
#ifndef YOLOV5_H_ |
|
#define YOLOV5_H_ |
|
|
|
#include <chrono> |
|
#include "cuda_utils.h" |
|
#include "logging.h" |
|
#include "utils.h" |
|
#include "calibrator.h" |
|
|
|
#define USE_FP16 |
|
#define DEVICE 0 |
|
#define NMS_THRESH 0.45 |
|
#define CONF_THRESH 0.25 |
|
#define BATCH_SIZE 1 |
|
|
|
|
|
static const int INPUT_H = Yolo::INPUT_H; |
|
static const int INPUT_W = Yolo::INPUT_W; |
|
static const int IMG_H = Yolo::IMG_H; |
|
static const int IMG_W = Yolo::IMG_W; |
|
static const int CLASS_NUM = Yolo::CLASS_NUM; |
|
static const int OUTPUT_SIZE = Yolo::MAX_OUTPUT_BBOX_COUNT * sizeof(Yolo::Detection) / sizeof(float) + 1; |
|
const char* INPUT_BLOB_NAME = "data"; |
|
const char* OUTPUT_DET_NAME = "det"; |
|
const char* OUTPUT_SEG_NAME = "seg"; |
|
const char* OUTPUT_LANE_NAME = "lane"; |
|
static Logger gLogger; |
|
|
|
ICudaEngine* build_engine(unsigned int maxBatchSize, IBuilder* builder, IBuilderConfig* config, DataType dt, float& gd, float& gw, std::string& wts_name) { |
|
INetworkDefinition* network = builder->createNetworkV2(0U); |
|
|
|
|
|
ITensor* data = network->addInput(INPUT_BLOB_NAME, dt, Dims3{ 3, INPUT_H, INPUT_W }); |
|
assert(data); |
|
|
|
|
|
|
|
|
|
std::map<std::string, Weights> weightMap = loadWeights(wts_name); |
|
Weights emptywts{ DataType::kFLOAT, nullptr, 0 }; |
|
|
|
|
|
|
|
auto focus0 = focus(network, weightMap, *data, 3, 32, 3, "model.0"); |
|
auto conv1 = convBlock(network, weightMap, *focus0->getOutput(0), 64, 3, 2, 1, "model.1"); |
|
auto bottleneck_CSP2 = bottleneckCSP(network, weightMap, *conv1->getOutput(0), 64, 64, 1, true, 1, 0.5, "model.2"); |
|
auto conv3 = convBlock(network, weightMap, *bottleneck_CSP2->getOutput(0), 128, 3, 2, 1, "model.3"); |
|
auto bottleneck_csp4 = bottleneckCSP(network, weightMap, *conv3->getOutput(0), 128, 128, 3, true, 1, 0.5, "model.4"); |
|
auto conv5 = convBlock(network, weightMap, *bottleneck_csp4->getOutput(0), 256, 3, 2, 1, "model.5"); |
|
auto bottleneck_csp6 = bottleneckCSP(network, weightMap, *conv5->getOutput(0), 256, 256, 3, true, 1, 0.5, "model.6"); |
|
auto conv7 = convBlock(network, weightMap, *bottleneck_csp6->getOutput(0), 512, 3, 2, 1, "model.7"); |
|
auto spp8 = SPP(network, weightMap, *conv7->getOutput(0), 512, 512, 5, 9, 13, "model.8"); |
|
|
|
|
|
auto bottleneck_csp9 = bottleneckCSP(network, weightMap, *spp8->getOutput(0), 512, 512, 1, false, 1, 0.5, "model.9"); |
|
auto conv10 = convBlock(network, weightMap, *bottleneck_csp9->getOutput(0), 256, 1, 1, 1, "model.10"); |
|
|
|
float *deval = reinterpret_cast<float*>(malloc(sizeof(float) * 256 * 2 * 2)); |
|
for (int i = 0; i < 256 * 2 * 2; i++) { |
|
deval[i] = 1.0; |
|
} |
|
Weights deconvwts11{ DataType::kFLOAT, deval, 256 * 2 * 2 }; |
|
IDeconvolutionLayer* deconv11 = network->addDeconvolutionNd(*conv10->getOutput(0), 256, DimsHW{ 2, 2 }, deconvwts11, emptywts); |
|
deconv11->setStrideNd(DimsHW{ 2, 2 }); |
|
deconv11->setNbGroups(256); |
|
weightMap["deconv11"] = deconvwts11; |
|
|
|
ITensor* inputTensors12[] = { deconv11->getOutput(0), bottleneck_csp6->getOutput(0) }; |
|
auto cat12 = network->addConcatenation(inputTensors12, 2); |
|
auto bottleneck_csp13 = bottleneckCSP(network, weightMap, *cat12->getOutput(0), 512, 256, 1, false, 1, 0.5, "model.13"); |
|
auto conv14 = convBlock(network, weightMap, *bottleneck_csp13->getOutput(0), 128, 1, 1, 1, "model.14"); |
|
|
|
Weights deconvwts15{ DataType::kFLOAT, deval, 128 * 2 * 2 }; |
|
IDeconvolutionLayer* deconv15 = network->addDeconvolutionNd(*conv14->getOutput(0), 128, DimsHW{ 2, 2 }, deconvwts15, emptywts); |
|
deconv15->setStrideNd(DimsHW{ 2, 2 }); |
|
deconv15->setNbGroups(128); |
|
|
|
ITensor* inputTensors16[] = { deconv15->getOutput(0), bottleneck_csp4->getOutput(0) }; |
|
auto cat16 = network->addConcatenation(inputTensors16, 2); |
|
auto bottleneck_csp17 = bottleneckCSP(network, weightMap, *cat16->getOutput(0), 256, 128, 1, false, 1, 0.5, "model.17"); |
|
IConvolutionLayer* det0 = network->addConvolutionNd(*bottleneck_csp17->getOutput(0), 3 * (Yolo::CLASS_NUM + 5), DimsHW{ 1, 1 }, weightMap["model.24.m.0.weight"], weightMap["model.24.m.0.bias"]); |
|
|
|
auto conv18 = convBlock(network, weightMap, *bottleneck_csp17->getOutput(0), 128, 3, 2, 1, "model.18"); |
|
ITensor* inputTensors19[] = { conv18->getOutput(0), conv14->getOutput(0) }; |
|
auto cat19 = network->addConcatenation(inputTensors19, 2); |
|
auto bottleneck_csp20 = bottleneckCSP(network, weightMap, *cat19->getOutput(0), 256, 256, 1, false, 1, 0.5, "model.20"); |
|
IConvolutionLayer* det1 = network->addConvolutionNd(*bottleneck_csp20->getOutput(0), 3 * (Yolo::CLASS_NUM + 5), DimsHW{ 1, 1 }, weightMap["model.24.m.1.weight"], weightMap["model.24.m.1.bias"]); |
|
|
|
auto conv21 = convBlock(network, weightMap, *bottleneck_csp20->getOutput(0), 256, 3, 2, 1, "model.21"); |
|
ITensor* inputTensors22[] = { conv21->getOutput(0), conv10->getOutput(0) }; |
|
auto cat22 = network->addConcatenation(inputTensors22, 2); |
|
auto bottleneck_csp23 = bottleneckCSP(network, weightMap, *cat22->getOutput(0), 512, 512, 1, false, 1, 0.5, "model.23"); |
|
IConvolutionLayer* det2 = network->addConvolutionNd(*bottleneck_csp23->getOutput(0), 3 * (Yolo::CLASS_NUM + 5), DimsHW{ 1, 1 }, weightMap["model.24.m.2.weight"], weightMap["model.24.m.2.bias"]); |
|
|
|
auto detect24 = addYoLoLayer(network, weightMap, det0, det1, det2); |
|
detect24->getOutput(0)->setName(OUTPUT_DET_NAME); |
|
|
|
auto conv25 = convBlock(network, weightMap, *cat16->getOutput(0), 64, 3, 1, 1, "model.25"); |
|
|
|
Weights deconvwts26{ DataType::kFLOAT, deval, 64 * 2 * 2 }; |
|
IDeconvolutionLayer* deconv26 = network->addDeconvolutionNd(*conv25->getOutput(0), 64, DimsHW{ 2, 2 }, deconvwts26, emptywts); |
|
deconv26->setStrideNd(DimsHW{ 2, 2 }); |
|
deconv26->setNbGroups(64); |
|
|
|
ITensor* inputTensors27[] = { deconv26->getOutput(0), bottleneck_CSP2->getOutput(0) }; |
|
auto cat27 = network->addConcatenation(inputTensors27, 2); |
|
auto bottleneck_csp28 = bottleneckCSP(network, weightMap, *cat27->getOutput(0), 128, 64, 1, false, 1, 0.5, "model.28"); |
|
auto conv29 = convBlock(network, weightMap, *bottleneck_csp28->getOutput(0), 32, 3, 1, 1, "model.29"); |
|
|
|
Weights deconvwts30{ DataType::kFLOAT, deval, 32 * 2 * 2 }; |
|
IDeconvolutionLayer* deconv30 = network->addDeconvolutionNd(*conv29->getOutput(0), 32, DimsHW{ 2, 2 }, deconvwts30, emptywts); |
|
deconv30->setStrideNd(DimsHW{ 2, 2 }); |
|
deconv30->setNbGroups(32); |
|
|
|
auto conv31 = convBlock(network, weightMap, *deconv30->getOutput(0), 16, 3, 1, 1, "model.31"); |
|
auto bottleneck_csp32 = bottleneckCSP(network, weightMap, *conv31->getOutput(0), 16, 8, 1, false, 1, 0.5, "model.32"); |
|
|
|
|
|
Weights deconvwts33{ DataType::kFLOAT, deval, 8 * 2 * 2 }; |
|
IDeconvolutionLayer* deconv33 = network->addDeconvolutionNd(*bottleneck_csp32->getOutput(0), 8, DimsHW{ 2, 2 }, deconvwts33, emptywts); |
|
deconv33->setStrideNd(DimsHW{ 2, 2 }); |
|
deconv33->setNbGroups(8); |
|
|
|
auto conv34 = convBlock(network, weightMap, *deconv33->getOutput(0), 3, 3, 1, 1, "model.34"); |
|
|
|
ISliceLayer *slicelayer = network->addSlice(*conv34->getOutput(0), Dims3{ 0, (Yolo::INPUT_H - Yolo::IMG_H) / 2, 0 }, Dims3{ 3, Yolo::IMG_H, Yolo::IMG_W }, Dims3{ 1, 1, 1 }); |
|
auto segout = network->addTopK(*slicelayer->getOutput(0), TopKOperation::kMAX, 1, 1); |
|
segout->getOutput(1)->setName(OUTPUT_SEG_NAME); |
|
|
|
auto conv35 = convBlock(network, weightMap, *cat16->getOutput(0), 64, 3, 1, 1, "model.35"); |
|
|
|
|
|
Weights deconvwts36{ DataType::kFLOAT, deval, 64 * 2 * 2 }; |
|
IDeconvolutionLayer* deconv36 = network->addDeconvolutionNd(*conv35->getOutput(0), 64, DimsHW{ 2, 2 }, deconvwts36, emptywts); |
|
deconv36->setStrideNd(DimsHW{ 2, 2 }); |
|
deconv36->setNbGroups(64); |
|
|
|
ITensor* inputTensors37[] = { deconv36->getOutput(0), bottleneck_CSP2->getOutput(0) }; |
|
auto cat37 = network->addConcatenation(inputTensors37, 2); |
|
auto bottleneck_csp38 = bottleneckCSP(network, weightMap, *cat37->getOutput(0), 128, 64, 1, false, 1, 0.5, "model.38"); |
|
auto conv39 = convBlock(network, weightMap, *bottleneck_csp38->getOutput(0), 32, 3, 1, 1, "model.39"); |
|
|
|
|
|
Weights deconvwts40{ DataType::kFLOAT, deval, 32 * 2 * 2 }; |
|
IDeconvolutionLayer* deconv40 = network->addDeconvolutionNd(*conv39->getOutput(0), 32, DimsHW{ 2, 2 }, deconvwts40, emptywts); |
|
deconv40->setStrideNd(DimsHW{ 2, 2 }); |
|
deconv40->setNbGroups(32); |
|
|
|
auto conv41 = convBlock(network, weightMap, *deconv40->getOutput(0), 16, 3, 1, 1, "model.41"); |
|
auto bottleneck_csp42 = bottleneckCSP(network, weightMap, *conv41->getOutput(0), 16, 8, 1, false, 1, 0.5, "model.42"); |
|
|
|
|
|
Weights deconvwts43{ DataType::kFLOAT, deval, 8 * 2 * 2 }; |
|
IDeconvolutionLayer* deconv43 = network->addDeconvolutionNd(*bottleneck_csp42->getOutput(0), 8, DimsHW{ 2, 2 }, deconvwts43, emptywts); |
|
deconv43->setStrideNd(DimsHW{ 2, 2 }); |
|
deconv43->setNbGroups(8); |
|
|
|
auto conv44 = convBlock(network, weightMap, *deconv43->getOutput(0), 2, 3, 1, 1, "model.44"); |
|
|
|
ISliceLayer *laneSlice = network->addSlice(*conv44->getOutput(0), Dims3{ 0, (Yolo::INPUT_H - Yolo::IMG_H) / 2, 0 }, Dims3{ 2, Yolo::IMG_H, Yolo::IMG_W }, Dims3{ 1, 1, 1 }); |
|
auto laneout = network->addTopK(*laneSlice->getOutput(0), TopKOperation::kMAX, 1, 1); |
|
laneout->getOutput(1)->setName(OUTPUT_LANE_NAME); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
network->markOutput(*detect24->getOutput(0)); |
|
|
|
network->markOutput(*segout->getOutput(1)); |
|
|
|
network->markOutput(*laneout->getOutput(1)); |
|
|
|
assert(false); |
|
|
|
|
|
builder->setMaxBatchSize(maxBatchSize); |
|
config->setMaxWorkspaceSize(2L * (1L << 30)); |
|
#if defined(USE_FP16) |
|
config->setFlag(BuilderFlag::kFP16); |
|
|
|
|
|
|
|
|
|
|
|
|
|
#endif |
|
|
|
std::cout << "Building engine, please wait for a while..." << std::endl; |
|
ICudaEngine* engine = builder->buildEngineWithConfig(*network, *config); |
|
std::cout << "Build engine successfully!" << std::endl; |
|
|
|
|
|
network->destroy(); |
|
|
|
|
|
for (auto& mem : weightMap) |
|
{ |
|
free((void*)(mem.second.values)); |
|
} |
|
|
|
return engine; |
|
} |
|
|
|
void APIToModel(unsigned int maxBatchSize, IHostMemory** modelStream, float& gd, float& gw, std::string& wts_name) { |
|
|
|
IBuilder* builder = createInferBuilder(gLogger); |
|
IBuilderConfig* config = builder->createBuilderConfig(); |
|
|
|
|
|
ICudaEngine* engine = build_engine(maxBatchSize, builder, config, DataType::kFLOAT, gd, gw, wts_name); |
|
assert(engine != nullptr); |
|
|
|
|
|
(*modelStream) = engine->serialize(); |
|
|
|
|
|
engine->destroy(); |
|
builder->destroy(); |
|
config->destroy(); |
|
} |
|
|
|
void doInference(IExecutionContext& context, cudaStream_t& stream, void **buffers, float* det_output, int* seg_output, int* lane_output, int batchSize) { |
|
|
|
|
|
context.enqueue(batchSize, buffers, stream, nullptr); |
|
CUDA_CHECK(cudaMemcpyAsync(det_output, buffers[1], batchSize * OUTPUT_SIZE * sizeof(float), cudaMemcpyDeviceToHost, stream)); |
|
CUDA_CHECK(cudaMemcpyAsync(seg_output, buffers[2], batchSize * IMG_H * IMG_W * sizeof(int), cudaMemcpyDeviceToHost, stream)); |
|
CUDA_CHECK(cudaMemcpyAsync(lane_output, buffers[3], batchSize * IMG_H * IMG_W * sizeof(int), cudaMemcpyDeviceToHost, stream)); |
|
cudaStreamSynchronize(stream); |
|
} |
|
|
|
void doInferenceCpu(IExecutionContext& context, cudaStream_t& stream, void **buffers, float* input, float* det_output, int* seg_output, int* lane_output, int batchSize) { |
|
|
|
CUDA_CHECK(cudaMemcpyAsync(buffers[0], input, batchSize * 3 * INPUT_H * INPUT_W * sizeof(float), cudaMemcpyHostToDevice, stream)); |
|
context.enqueue(batchSize, buffers, stream, nullptr); |
|
CUDA_CHECK(cudaMemcpyAsync(det_output, buffers[1], batchSize * OUTPUT_SIZE * sizeof(float), cudaMemcpyDeviceToHost, stream)); |
|
CUDA_CHECK(cudaMemcpyAsync(seg_output, buffers[2], batchSize * IMG_H * IMG_W * sizeof(int), cudaMemcpyDeviceToHost, stream)); |
|
CUDA_CHECK(cudaMemcpyAsync(lane_output, buffers[3], batchSize * IMG_H * IMG_W * sizeof(int), cudaMemcpyDeviceToHost, stream)); |
|
cudaStreamSynchronize(stream); |
|
} |
|
|
|
bool parse_args(int argc, char** argv, std::string& wts, std::string& engine, float& gd, float& gw, std::string& img_dir) { |
|
if (argc < 4) return false; |
|
if (std::string(argv[1]) == "-s" && (argc == 5 || argc == 7)) { |
|
wts = std::string(argv[2]); |
|
engine = std::string(argv[3]); |
|
auto net = std::string(argv[4]); |
|
if (net == "s") { |
|
gd = 0.33; |
|
gw = 0.50; |
|
} else if (net == "m") { |
|
gd = 0.67; |
|
gw = 0.75; |
|
} else if (net == "l") { |
|
gd = 1.0; |
|
gw = 1.0; |
|
} else if (net == "x") { |
|
gd = 1.33; |
|
gw = 1.25; |
|
} else if (net == "c" && argc == 7) { |
|
gd = atof(argv[5]); |
|
gw = atof(argv[6]); |
|
} else { |
|
return false; |
|
} |
|
} else if (std::string(argv[1]) == "-d" && argc == 4) { |
|
engine = std::string(argv[2]); |
|
img_dir = std::string(argv[3]); |
|
} else { |
|
return false; |
|
} |
|
return true; |
|
} |
|
|
|
|
|
#endif |