import torch from lib.utils import is_parallel import numpy as np np.set_printoptions(threshold=np.inf) import cv2 from sklearn.cluster import DBSCAN def build_targets(cfg, predictions, targets, model): ''' predictions [16, 3, 32, 32, 85] [16, 3, 16, 16, 85] [16, 3, 8, 8, 85] torch.tensor(predictions[i].shape)[[3, 2, 3, 2]] [32,32,32,32] [16,16,16,16] [8,8,8,8] targets[3,x,7] t [index, class, x, y, w, h, head_index] ''' # Build targets for compute_loss(), input targets(image,class,x,y,w,h) det = model.module.model[model.module.detector_index] if is_parallel(model) \ else model.model[model.detector_index] # Detect() module # print(type(model)) # det = model.model[model.detector_index] # print(type(det)) na, nt = det.na, targets.shape[0] # number of anchors, targets tcls, tbox, indices, anch = [], [], [], [] gain = torch.ones(7, device=targets.device) # normalized to gridspace gain ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt) targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices g = 0.5 # bias off = torch.tensor([[0, 0], [1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm ], device=targets.device).float() * g # offsets for i in range(det.nl): anchors = det.anchors[i] #[3,2] gain[2:6] = torch.tensor(predictions[i].shape)[[3, 2, 3, 2]] # xyxy gain # Match targets to anchors t = targets * gain if nt: # Matches r = t[:, :, 4:6] / anchors[:, None] # wh ratio j = torch.max(r, 1. / r).max(2)[0] < cfg.TRAIN.ANCHOR_THRESHOLD # compare # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2)) t = t[j] # filter # Offsets gxy = t[:, 2:4] # grid xy gxi = gain[[2, 3]] - gxy # inverse j, k = ((gxy % 1. < g) & (gxy > 1.)).T l, m = ((gxi % 1. < g) & (gxi > 1.)).T j = torch.stack((torch.ones_like(j), j, k, l, m)) t = t.repeat((5, 1, 1))[j] offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j] else: t = targets[0] offsets = 0 # Define b, c = t[:, :2].long().T # image, class gxy = t[:, 2:4] # grid xy gwh = t[:, 4:6] # grid wh gij = (gxy - offsets).long() gi, gj = gij.T # grid xy indices # Append a = t[:, 6].long() # anchor indices indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices tbox.append(torch.cat((gxy - gij, gwh), 1)) # box anch.append(anchors[a]) # anchors tcls.append(c) # class return tcls, tbox, indices, anch def morphological_process(image, kernel_size=5, func_type=cv2.MORPH_CLOSE): """ morphological process to fill the hole in the binary segmentation result :param image: :param kernel_size: :return: """ if len(image.shape) == 3: raise ValueError('Binary segmentation result image should be a single channel image') if image.dtype is not np.uint8: image = np.array(image, np.uint8) kernel = cv2.getStructuringElement(shape=cv2.MORPH_ELLIPSE, ksize=(kernel_size, kernel_size)) # close operation fille hole closing = cv2.morphologyEx(image, func_type, kernel, iterations=1) return closing def connect_components_analysis(image): """ connect components analysis to remove the small components :param image: :return: """ if len(image.shape) == 3: gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) else: gray_image = image # print(gray_image.dtype) return cv2.connectedComponentsWithStats(gray_image, connectivity=8, ltype=cv2.CV_32S) # def if_y(samples_x): # for sample_x in samples_x: # if len(sample_x): # if len(sample_x) != (sample_x[-1] - sample_x[0] + 1): # return False # return True # def fitlane(mask, sel_labels, labels, stats): # for label_group in sel_labels: # states = [stats[k] for k in label_group] # x_max, y_max, w_max, h_max, _ = np.amax(np.array(states), axis=0) # x_min, y_min, w_min, h_min, _ = np.amin(np.array(states), axis=0) # # print(np.array(states)) # x = x_min; y = y_min; w = w_max; h = h_max # if len(label_group) > 1: # # print(label_group) # for m in range(len(label_group)-1): # # print(label_group[m+1]) # # print(label_group[0]) # labels[labels == label_group[m+1]] = label_group[0] # t = label_group[0] # if (y_max + h - 1) > 720: # samples_y = np.linspace(y, 720-1, 20) # else: # samples_y = np.linspace(y, y_max+h-1, 20) # samples_x = [np.where(labels[int(sample_y)]==t)[0] for sample_y in samples_y] # if if_y(samples_x): # # print('in y') # samples_x = [int(np.mean(sample_x)) if len(sample_x) else -1 for sample_x in samples_x] # samples_x = np.array(samples_x) # samples_y = np.array(samples_y) # samples_y = samples_y[samples_x != -1] # samples_x = samples_x[samples_x != -1] # func = np.polyfit(samples_y, samples_x, 2) # # x_limits = np.polyval(func, 0) # # if x_limits < 0 or x_limits > 1280: # # if (y_max + h - 1) > 720: # draw_y = np.linspace(y, 720-1, 720-y) # # else: # # draw_y = np.linspace(y, y_max+h-1, y_max+h-y) # # draw_y = np.linspace(y, 720-1, 720-y) # draw_x = np.polyval(func, draw_y) # draw_y = draw_y[draw_x < 1280] # draw_x = draw_x[draw_x < 1280] # draw_points = (np.asarray([draw_x, draw_y]).T).astype(np.int32) # cv2.polylines(mask, [draw_points], False, 1, thickness=15) # else: # # print('in x') # if (x_max + w - 1) > 1280: # samples_x = np.linspace(x, 1280-1, 20) # else: # samples_x = np.linspace(x, x_max+w-1, 20) # samples_y = [np.where(labels[:, int(sample_x)]==t)[0] for sample_x in samples_x] # samples_y = [int(np.mean(sample_y)) if len(sample_y) else -1 for sample_y in samples_y] # samples_x = np.array(samples_x) # samples_y = np.array(samples_y) # samples_x = samples_x[samples_y != -1] # samples_y = samples_y[samples_y != -1] # func = np.polyfit(samples_x, samples_y, 2) # # y_limits = np.polyval(func, 0) # # if y_limits > 720 or y_limits < 0: # # if (x_max + w - 1) > 1280: # draw_x = np.linspace(x, 1280-1, 1280-x) # # else: # # y_limits = np.polyval(func, 0) # # if y_limits > 720 or y_limits < 0: # # draw_x = np.linspace(x, x_max+w-1, w+x_max-x) # # else: # # if x_max+w-1 < 640: # # draw_x = np.linspace(0, x_max+w-1, w+x_max-x) # # else: # # draw_x = np.linspace(x, 1280-1, 1280-x) # draw_y = np.polyval(func, draw_x) # draw_x = draw_x[draw_y < 720] # draw_y = draw_y[draw_y < 720] # draw_points = (np.asarray([draw_x, draw_y]).T).astype(np.int32) # cv2.polylines(mask, [draw_points], False, 1, thickness=15) # return mask # def connect_lane(image): # if len(image.shape) == 3: # gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # else: # gray_image = image # mask = np.zeros((image.shape[0], image.shape[1]), np.uint8) # # print(gray_image.dtype) # num_labels, labels, stats, centers = cv2.connectedComponentsWithStats(gray_image, connectivity=8, ltype=cv2.CV_32S) # ratios = [] # selected_label = [] # for t in range(1, num_labels, 1): # x, y, w, h, area = stats[t] # center = centers[t] # if area > 400: # samples_y = [y, y+h-1] # selected_label.append(t) # samples_x = [np.where(labels[int(m)]==t)[0] for m in samples_y] # samples_x = [int(np.median(sample_x)) for sample_x in samples_x] # delta_x = samples_x[1] - samples_x[0] # if center[0]/1280 > 0.5: # ratios.append([0.7 * h / delta_x , h / w, 1.]) # else: # ratios.append([0.7 * h / delta_x , h / w, 0.]) # clustering = DBSCAN(eps=0.3, min_samples=1).fit(ratios) # # print(clustering.labels_) # split_labels = [] # selected_label = np.array(selected_label) # for k in range(len(set(clustering.labels_))): # index = np.where(clustering.labels_==k)[0] # split_labels.append(selected_label[index]) # # for i in range(1, num_labels, 1): # # if i not in set(selected_label): # # labels[labels == i] = 0 # # print(split_labels) # mask_post = fitlane(mask, split_labels, labels, stats) # return mask_post