--- base_model: NousResearch/Llama-2-7b-hf library_name: peft tags: - axolotl - generated_from_trainer model-index: - name: answer-emojis results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: NousResearch/Llama-2-7b-hf model_type: LlamaForCausalLM tokenizer_type: LlamaTokenizer load_in_8bit: true load_in_4bit: false strict: false datasets: - path: formatted_math_ratio_02_emojianswers_10k.jsonl ds_type: json type: alpaca val_set_size: 0.05 dataset_prepared_path: output_dir: ./outputs/ppml-formatted hf_use_auth_token: True hub_model_id: Ritual-Net/answer-emojis hub_strategy: all_checkpoints eval_sample_packing: False sequence_len: 4096 sample_packing: true pad_to_sequence_len: true adapter: lora lora_model_dir: lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: wandb_project: ppml wandb_entity: ritualnah wandb_watch: wandb_name: emojianswers wandb_log_model: "checkpoint" lora_modules_to_save: - embed_tokens - lm_head gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 3 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true s2_attention: warmup_steps: 10 evals_per_epoch: 2 eval_table_size: eval_max_new_tokens: 128 saves_every_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: special_tokens: bos_token: "" eos_token: "" unk_token: "" tokens: # these are delimiters - "[INST]" - "[/INST]" ```

[Visualize in Weights & Biases](https://wandb.ai/ritualnah/ppml/runs/3q9smy0v) # answer-emojis This model is a fine-tuned version of [NousResearch/Llama-2-7b-hf](https://huggingface.co/NousResearch/Llama-2-7b-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5239 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.0155 | 0.0082 | 1 | 1.2302 | | 0.5161 | 0.5031 | 61 | 0.5744 | | 0.5398 | 1.0062 | 122 | 0.5379 | | 0.4614 | 1.4990 | 183 | 0.5295 | | 0.4323 | 2.0021 | 244 | 0.5178 | | 0.3823 | 2.4948 | 305 | 0.5239 | ### Framework versions - PEFT 0.11.1 - Transformers 4.42.3 - Pytorch 2.1.2+cu118 - Datasets 2.19.1 - Tokenizers 0.19.1