--- base_model: openai/whisper-medium datasets: - mozilla-foundation/common_voice_11_0 language: - id library_name: transformers license: apache-2.0 metrics: - wer tags: - generated_from_trainer model-index: - name: whisper-medium-id results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: id split: test args: 'config: id, split: test' metrics: - type: wer value: 13.595981208428299 name: Wer --- # whisper-medium-id This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2226 - Wer: 13.5960 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.2024 | 1.9305 | 1000 | 0.1830 | 13.1076 | | 0.109 | 3.8610 | 2000 | 0.1825 | 13.0750 | | 0.0608 | 5.7915 | 3000 | 0.1949 | 13.2797 | | 0.0327 | 7.7220 | 4000 | 0.2128 | 13.4750 | | 0.0258 | 9.6525 | 5000 | 0.2226 | 13.5960 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 3.0.0 - Tokenizers 0.19.1