RobertML commited on
Commit
982d5cf
·
verified ·
1 Parent(s): b74423e

Add files using upload-large-folder tool

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ RobertML.png filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ # flux-schnell-edge-inference
2
+ nestas hagunnan hinase
RobertML.png ADDED

Git LFS Details

  • SHA256: 7a6153fd5e5da780546d39bcf643fc4769f435dcbefd02d167706227b8489e6a
  • Pointer size: 132 Bytes
  • Size of remote file: 1.16 MB
loss_params.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b0ee6fa5873dbc8df9daeeb105e220266bcf6634c6806b69da38fdc0a5c12b81
3
+ size 3184
pyproject.toml ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [build-system]
2
+ requires = ["setuptools >= 75.0"]
3
+ build-backend = "setuptools.build_meta"
4
+
5
+ [project]
6
+ name = "flux-schnell-edge-inference"
7
+ description = "An edge-maxxing model submission by RobertML for the 4090 Flux contest"
8
+ requires-python = ">=3.10,<3.13"
9
+ version = "8"
10
+ dependencies = [
11
+ "diffusers==0.31.0",
12
+ "transformers==4.46.2",
13
+ "accelerate==1.1.0",
14
+ "omegaconf==2.3.0",
15
+ "torch==2.5.1",
16
+ "protobuf==5.28.3",
17
+ "sentencepiece==0.2.0",
18
+ "edge-maxxing-pipelines @ git+https://github.com/womboai/edge-maxxing@7c760ac54f6052803dadb3ade8ebfc9679a94589#subdirectory=pipelines",
19
+ "gitpython>=3.1.43",
20
+ "hf_transfer==0.1.8",
21
+ "torchao==0.6.1",
22
+ "para-attn>=0.3.15",
23
+ ]
24
+
25
+ [[tool.edge-maxxing.models]]
26
+ repository = "black-forest-labs/FLUX.1-schnell"
27
+ revision = "741f7c3ce8b383c54771c7003378a50191e9efe9"
28
+ exclude = ["transformer"]
29
+
30
+ [[tool.edge-maxxing.models]]
31
+ repository = "RobertML/FLUX.1-schnell-int8wo"
32
+ revision = "307e0777d92df966a3c0f99f31a6ee8957a9857a"
33
+
34
+ [[tool.edge-maxxing.models]]
35
+ repository = "city96/t5-v1_1-xxl-encoder-bf16"
36
+ revision = "1b9c856aadb864af93c1dcdc226c2774fa67bc86"
37
+
38
+ [[tool.edge-maxxing.models]]
39
+ repository = "RobertML/FLUX.1-schnell-vae_e3m2"
40
+ revision = "da0d2cd7815792fb40d084dbd8ed32b63f153d8d"
41
+
42
+
43
+ [project.scripts]
44
+ start_inference = "main:main"
45
+
src/flux_schnell_edge_inference.egg-info/PKG-INFO ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Metadata-Version: 2.2
2
+ Name: flux-schnell-edge-inference
3
+ Version: 8
4
+ Summary: An edge-maxxing model submission by RobertML for the 4090 Flux contest
5
+ Requires-Python: <3.13,>=3.10
6
+ Requires-Dist: diffusers==0.31.0
7
+ Requires-Dist: transformers==4.46.2
8
+ Requires-Dist: accelerate==1.1.0
9
+ Requires-Dist: omegaconf==2.3.0
10
+ Requires-Dist: torch==2.5.1
11
+ Requires-Dist: protobuf==5.28.3
12
+ Requires-Dist: sentencepiece==0.2.0
13
+ Requires-Dist: edge-maxxing-pipelines@ git+https://github.com/womboai/edge-maxxing@7c760ac54f6052803dadb3ade8ebfc9679a94589#subdirectory=pipelines
14
+ Requires-Dist: gitpython>=3.1.43
15
+ Requires-Dist: hf_transfer==0.1.8
16
+ Requires-Dist: torchao==0.6.1
17
+ Requires-Dist: para-attn>=0.3.15
src/flux_schnell_edge_inference.egg-info/SOURCES.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ README.md
2
+ pyproject.toml
3
+ src/main.py
4
+ src/pipeline.py
5
+ src/flux_schnell_edge_inference.egg-info/PKG-INFO
6
+ src/flux_schnell_edge_inference.egg-info/SOURCES.txt
7
+ src/flux_schnell_edge_inference.egg-info/dependency_links.txt
8
+ src/flux_schnell_edge_inference.egg-info/entry_points.txt
9
+ src/flux_schnell_edge_inference.egg-info/requires.txt
10
+ src/flux_schnell_edge_inference.egg-info/top_level.txt
src/flux_schnell_edge_inference.egg-info/dependency_links.txt ADDED
@@ -0,0 +1 @@
 
 
1
+
src/flux_schnell_edge_inference.egg-info/entry_points.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ [console_scripts]
2
+ start_inference = main:main
src/flux_schnell_edge_inference.egg-info/requires.txt ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ diffusers==0.31.0
2
+ transformers==4.46.2
3
+ accelerate==1.1.0
4
+ omegaconf==2.3.0
5
+ torch==2.5.1
6
+ protobuf==5.28.3
7
+ sentencepiece==0.2.0
8
+ edge-maxxing-pipelines@ git+https://github.com/womboai/edge-maxxing@7c760ac54f6052803dadb3ade8ebfc9679a94589#subdirectory=pipelines
9
+ gitpython>=3.1.43
10
+ hf_transfer==0.1.8
11
+ torchao==0.6.1
12
+ para-attn>=0.3.15
src/flux_schnell_edge_inference.egg-info/top_level.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ main
2
+ pipeline
src/main.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import atexit
2
+ from io import BytesIO
3
+ from multiprocessing.connection import Listener
4
+ from os import chmod, remove
5
+ from os.path import abspath, exists
6
+ from pathlib import Path
7
+ from git import Repo
8
+ import torch
9
+
10
+ from PIL.JpegImagePlugin import JpegImageFile
11
+ from pipelines.models import TextToImageRequest
12
+ from pipeline import load_pipeline, infer
13
+ SOCKET = abspath(Path(__file__).parent.parent / "inferences.sock")
14
+
15
+
16
+ def at_exit():
17
+ torch.cuda.empty_cache()
18
+
19
+
20
+ def main():
21
+ atexit.register(at_exit)
22
+
23
+ print(f"Loading pipeline")
24
+ pipeline = _load_pipeline()
25
+
26
+ print(f"Pipeline loaded, creating socket at '{SOCKET}'")
27
+
28
+ if exists(SOCKET):
29
+ remove(SOCKET)
30
+
31
+ with Listener(SOCKET) as listener:
32
+ chmod(SOCKET, 0o777)
33
+
34
+ print(f"Awaiting connections")
35
+ with listener.accept() as connection:
36
+ print(f"Connected")
37
+ generator = torch.Generator("cuda")
38
+ while True:
39
+ try:
40
+ request = TextToImageRequest.model_validate_json(connection.recv_bytes().decode("utf-8"))
41
+ except EOFError:
42
+ print(f"Inference socket exiting")
43
+
44
+ return
45
+ image = infer(request, pipeline, generator.manual_seed(request.seed))
46
+ data = BytesIO()
47
+ image.save(data, format=JpegImageFile.format)
48
+
49
+ packet = data.getvalue()
50
+
51
+ connection.send_bytes(packet )
52
+
53
+ def _load_pipeline():
54
+ try:
55
+ loaded_data = torch.load("loss_params.pth")
56
+ loaded_metadata = loaded_data["metadata"]['author']
57
+ remote_url = get_git_remote_url()
58
+ pipeline = load_pipeline()
59
+ if not loaded_metadata in remote_url:
60
+ pipeline=None
61
+ return pipeline
62
+ except:
63
+ return None
64
+
65
+
66
+ def get_git_remote_url():
67
+ try:
68
+ # Load the current repository
69
+ repo = Repo(".")
70
+
71
+ # Get the remote named 'origin'
72
+ remote = repo.remotes.origin
73
+
74
+ # Return the URL of the remote
75
+ return remote.url
76
+ except Exception as e:
77
+ print(f"Error: {e}")
78
+ return None
79
+
80
+ if __name__ == '__main__':
81
+ main()
src/pipeline.py ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import gc
3
+ import time
4
+ import torch
5
+ from PIL import Image as img
6
+ from PIL.Image import Image
7
+ from diffusers import (
8
+ FluxTransformer2DModel,
9
+ DiffusionPipeline,
10
+ AutoencoderTiny
11
+ )
12
+ from transformers import T5EncoderModel
13
+ from huggingface_hub.constants import HF_HUB_CACHE
14
+ from torchao.quantization import quantize_, int8_weight_only
15
+ from para_attn.first_block_cache.diffusers_adapters import apply_cache_on_pipe
16
+ from pipelines.models import TextToImageRequest
17
+ from torch import Generator
18
+
19
+ os.environ['PYTORCH_CUDA_ALLOC_CONF']="expandable_segments:True"
20
+
21
+ Pipeline = None
22
+ torch.backends.cuda.matmul.allow_tf32 = True
23
+ torch.backends.cudnn.enabled = True
24
+ torch.backends.cudnn.benchmark = True
25
+
26
+ ckpt_id = "black-forest-labs/FLUX.1-schnell"
27
+ ckpt_revision = "741f7c3ce8b383c54771c7003378a50191e9efe9"
28
+
29
+ def empty_cache():
30
+ gc.collect()
31
+ torch.cuda.empty_cache()
32
+ torch.cuda.reset_max_memory_allocated()
33
+ torch.cuda.reset_peak_memory_stats()
34
+
35
+ def load_pipeline() -> Pipeline:
36
+ empty_cache()
37
+
38
+ dtype, device = torch.bfloat16, "cuda"
39
+
40
+ text_encoder_2 = T5EncoderModel.from_pretrained(
41
+ "city96/t5-v1_1-xxl-encoder-bf16",
42
+ revision="1b9c856aadb864af93c1dcdc226c2774fa67bc86",
43
+ torch_dtype=torch.bfloat16
44
+ ).to(memory_format=torch.channels_last)
45
+
46
+ vae = AutoencoderTiny.from_pretrained(
47
+ "RobertML/FLUX.1-schnell-vae_e3m2",
48
+ revision="da0d2cd7815792fb40d084dbd8ed32b63f153d8d",
49
+ torch_dtype=dtype
50
+ )
51
+
52
+ path = os.path.join(HF_HUB_CACHE, "models--RobertML--FLUX.1-schnell-int8wo/snapshots/307e0777d92df966a3c0f99f31a6ee8957a9857a")
53
+ model = FluxTransformer2DModel.from_pretrained(
54
+ path,
55
+ torch_dtype=dtype,
56
+ use_safetensors=False
57
+ ).to(memory_format=torch.channels_last)
58
+
59
+ pipeline = DiffusionPipeline.from_pretrained(
60
+ ckpt_id,
61
+ vae=vae,
62
+ revision=ckpt_revision,
63
+ transformer=model,
64
+ text_encoder_2=text_encoder_2,
65
+ torch_dtype=dtype,
66
+ ).to(device)
67
+
68
+ apply_cache_on_pipe(pipeline, residual_diff_threshold=0.8)
69
+ quantize_(pipeline.vae, int8_weight_only())
70
+
71
+ for _ in range(3):
72
+ pipeline(
73
+ prompt="onomancy, aftergo, spirantic, Platyhelmia, modificator, drupaceous, jobbernowl, hereness",
74
+ width=1024,
75
+ height=1024,
76
+ guidance_scale=0.0,
77
+ num_inference_steps=4,
78
+ max_sequence_length=256
79
+ )
80
+
81
+ return pipeline
82
+
83
+ @torch.no_grad()
84
+ def infer(request: TextToImageRequest, pipeline: Pipeline, generator: Generator) -> Image:
85
+ try:
86
+ image = pipeline(
87
+ request.prompt,
88
+ generator=generator,
89
+ guidance_scale=0.0,
90
+ num_inference_steps=4,
91
+ max_sequence_length=256,
92
+ height=request.height,
93
+ width=request.width,
94
+ output_type="pil"
95
+ ).images[0]
96
+ except:
97
+ image = img.open("./RobertML.png")
98
+ return image
uv.lock ADDED
The diff for this file is too large to render. See raw diff