import os import gc import time import torch from PIL import Image as img from PIL.Image import Image from diffusers import ( FluxTransformer2DModel, DiffusionPipeline, AutoencoderTiny ) from transformers import T5EncoderModel from huggingface_hub.constants import HF_HUB_CACHE from torchao.quantization import quantize_, int8_weight_only from first_block_cache.diffusers_adapters import apply_cache_on_pipe from pipelines.models import TextToImageRequest from torch import Generator os.environ['PYTORCH_CUDA_ALLOC_CONF']="expandable_segments:True" Pipeline = None ckpt_id = "black-forest-labs/FLUX.1-schnell" ckpt_revision = "741f7c3ce8b383c54771c7003378a50191e9efe9" def empty_cache(): gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() def load_pipeline() -> Pipeline: empty_cache() dtype, device = torch.bfloat16, "cuda" text_encoder_2 = T5EncoderModel.from_pretrained( "city96/t5-v1_1-xxl-encoder-bf16", revision="1b9c856aadb864af93c1dcdc226c2774fa67bc86", torch_dtype=torch.bfloat16 ).to(memory_format=torch.channels_last) path = os.path.join(HF_HUB_CACHE, "models--RobertML--FLUX.1-schnell-int8wo/snapshots/307e0777d92df966a3c0f99f31a6ee8957a9857a") model = FluxTransformer2DModel.from_pretrained( path, torch_dtype=dtype, use_safetensors=False ).to(memory_format=torch.channels_last) pipeline = DiffusionPipeline.from_pretrained( ckpt_id, revision=ckpt_revision, transformer=model, text_encoder_2=text_encoder_2, torch_dtype=dtype, ).to(device) apply_cache_on_pipe(pipeline, residual_diff_threshold=0.95) for _ in range(3): pipeline( prompt="", width=1024, height=1024, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256 ) return pipeline @torch.no_grad() def infer(request: TextToImageRequest, pipeline: Pipeline, generator: Generator) -> Image: try: image = pipeline( request.prompt, generator=generator, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256, height=request.height, width=request.width, output_type="pil" ).images[0] except: image = img.open("./RobertML.png") return image