Add files using upload-large-folder tool
Browse files- .gitattributes +1 -0
- README.md +2 -0
- RobertML.png +3 -0
- loss_params.pth +3 -0
- pyproject.toml +44 -0
- src/__pycache__/main.cpython-311.pyc +0 -0
- src/__pycache__/pipeline.cpython-311.pyc +0 -0
- src/first_block_cache/__init__.py +0 -0
- src/first_block_cache/__pycache__/__init__.cpython-311.pyc +0 -0
- src/first_block_cache/__pycache__/utils.cpython-311.pyc +0 -0
- src/first_block_cache/diffusers_adapters/__init__.py +45 -0
- src/first_block_cache/diffusers_adapters/__pycache__/__init__.cpython-311.pyc +0 -0
- src/first_block_cache/diffusers_adapters/__pycache__/flux.cpython-311.pyc +0 -0
- src/first_block_cache/diffusers_adapters/cogvideox.py +72 -0
- src/first_block_cache/diffusers_adapters/flux.py +79 -0
- src/first_block_cache/diffusers_adapters/hunyuan_video.py +199 -0
- src/first_block_cache/diffusers_adapters/mochi.py +72 -0
- src/first_block_cache/utils.py +222 -0
- src/flux_schnell_edge_inference.egg-info/PKG-INFO +16 -0
- src/flux_schnell_edge_inference.egg-info/SOURCES.txt +17 -0
- src/flux_schnell_edge_inference.egg-info/dependency_links.txt +1 -0
- src/flux_schnell_edge_inference.egg-info/entry_points.txt +2 -0
- src/flux_schnell_edge_inference.egg-info/requires.txt +11 -0
- src/flux_schnell_edge_inference.egg-info/top_level.txt +3 -0
- src/main.py +81 -0
- src/pipeline.py +97 -0
- uv.lock +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
RobertML.png filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
# flux-schnell-edge-inference
|
2 |
+
nestas hagunnan hinase
|
RobertML.png
ADDED
![]() |
Git LFS Details
|
loss_params.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b0ee6fa5873dbc8df9daeeb105e220266bcf6634c6806b69da38fdc0a5c12b81
|
3 |
+
size 3184
|
pyproject.toml
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[build-system]
|
2 |
+
requires = ["setuptools >= 75.0"]
|
3 |
+
build-backend = "setuptools.build_meta"
|
4 |
+
|
5 |
+
[project]
|
6 |
+
name = "flux-schnell-edge-inference"
|
7 |
+
description = "An edge-maxxing model submission by RobertML for the 4090 Flux contest"
|
8 |
+
requires-python = ">=3.10,<3.13"
|
9 |
+
version = "8"
|
10 |
+
dependencies = [
|
11 |
+
"diffusers==0.31.0",
|
12 |
+
"transformers==4.46.2",
|
13 |
+
"accelerate==1.1.0",
|
14 |
+
"omegaconf==2.3.0",
|
15 |
+
"torch==2.6.0",
|
16 |
+
"protobuf==5.28.3",
|
17 |
+
"sentencepiece==0.2.0",
|
18 |
+
"edge-maxxing-pipelines @ git+https://github.com/womboai/edge-maxxing@7c760ac54f6052803dadb3ade8ebfc9679a94589#subdirectory=pipelines",
|
19 |
+
"gitpython>=3.1.43",
|
20 |
+
"hf_transfer==0.1.8",
|
21 |
+
"torchao==0.6.1",
|
22 |
+
]
|
23 |
+
|
24 |
+
[[tool.edge-maxxing.models]]
|
25 |
+
repository = "black-forest-labs/FLUX.1-schnell"
|
26 |
+
revision = "741f7c3ce8b383c54771c7003378a50191e9efe9"
|
27 |
+
exclude = ["transformer"]
|
28 |
+
|
29 |
+
[[tool.edge-maxxing.models]]
|
30 |
+
repository = "RobertML/FLUX.1-schnell-int8wo"
|
31 |
+
revision = "307e0777d92df966a3c0f99f31a6ee8957a9857a"
|
32 |
+
|
33 |
+
[[tool.edge-maxxing.models]]
|
34 |
+
repository = "city96/t5-v1_1-xxl-encoder-bf16"
|
35 |
+
revision = "1b9c856aadb864af93c1dcdc226c2774fa67bc86"
|
36 |
+
|
37 |
+
[[tool.edge-maxxing.models]]
|
38 |
+
repository = "RobertML/FLUX.1-schnell-vae_e3m2"
|
39 |
+
revision = "da0d2cd7815792fb40d084dbd8ed32b63f153d8d"
|
40 |
+
|
41 |
+
|
42 |
+
[project.scripts]
|
43 |
+
start_inference = "main:main"
|
44 |
+
|
src/__pycache__/main.cpython-311.pyc
ADDED
Binary file (4.42 kB). View file
|
|
src/__pycache__/pipeline.cpython-311.pyc
ADDED
Binary file (4.74 kB). View file
|
|
src/first_block_cache/__init__.py
ADDED
File without changes
|
src/first_block_cache/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (151 Bytes). View file
|
|
src/first_block_cache/__pycache__/utils.cpython-311.pyc
ADDED
Binary file (10.5 kB). View file
|
|
src/first_block_cache/diffusers_adapters/__init__.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import importlib
|
2 |
+
|
3 |
+
from diffusers import DiffusionPipeline
|
4 |
+
|
5 |
+
|
6 |
+
def apply_cache_on_transformer(transformer, *args, **kwargs):
|
7 |
+
transformer_cls_name = transformer.__class__.__name__
|
8 |
+
if False:
|
9 |
+
pass
|
10 |
+
elif transformer_cls_name.startswith("Flux"):
|
11 |
+
adapter_name = "flux"
|
12 |
+
elif transformer_cls_name.startswith("Mochi"):
|
13 |
+
adapter_name = "mochi"
|
14 |
+
elif transformer_cls_name.startswith("CogVideoX"):
|
15 |
+
adapter_name = "cogvideox"
|
16 |
+
elif transformer_cls_name.startswith("HunyuanVideo"):
|
17 |
+
adapter_name = "hunyuan_video"
|
18 |
+
else:
|
19 |
+
raise ValueError(f"Unknown transformer class name: {transformer_cls_name}")
|
20 |
+
|
21 |
+
adapter_module = importlib.import_module(f".{adapter_name}", __package__)
|
22 |
+
apply_cache_on_transformer_fn = getattr(adapter_module, "apply_cache_on_transformer")
|
23 |
+
return apply_cache_on_transformer_fn(transformer, *args, **kwargs)
|
24 |
+
|
25 |
+
|
26 |
+
def apply_cache_on_pipe(pipe: DiffusionPipeline, *args, **kwargs):
|
27 |
+
assert isinstance(pipe, DiffusionPipeline)
|
28 |
+
|
29 |
+
pipe_cls_name = pipe.__class__.__name__
|
30 |
+
if False:
|
31 |
+
pass
|
32 |
+
elif pipe_cls_name.startswith("Flux"):
|
33 |
+
adapter_name = "flux"
|
34 |
+
elif pipe_cls_name.startswith("Mochi"):
|
35 |
+
adapter_name = "mochi"
|
36 |
+
elif pipe_cls_name.startswith("CogVideoX"):
|
37 |
+
adapter_name = "cogvideox"
|
38 |
+
elif pipe_cls_name.startswith("HunyuanVideo"):
|
39 |
+
adapter_name = "hunyuan_video"
|
40 |
+
else:
|
41 |
+
raise ValueError(f"Unknown pipeline class name: {pipe_cls_name}")
|
42 |
+
|
43 |
+
adapter_module = importlib.import_module(f".{adapter_name}", __package__)
|
44 |
+
apply_cache_on_pipe_fn = getattr(adapter_module, "apply_cache_on_pipe")
|
45 |
+
return apply_cache_on_pipe_fn(pipe, *args, **kwargs)
|
src/first_block_cache/diffusers_adapters/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (2.35 kB). View file
|
|
src/first_block_cache/diffusers_adapters/__pycache__/flux.cpython-311.pyc
ADDED
Binary file (3.48 kB). View file
|
|
src/first_block_cache/diffusers_adapters/cogvideox.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
import unittest
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from diffusers import CogVideoXTransformer3DModel, DiffusionPipeline
|
6 |
+
|
7 |
+
from para_attn.first_block_cache import utils
|
8 |
+
|
9 |
+
|
10 |
+
def apply_cache_on_transformer(
|
11 |
+
transformer: CogVideoXTransformer3DModel,
|
12 |
+
*,
|
13 |
+
residual_diff_threshold=0.04,
|
14 |
+
):
|
15 |
+
cached_transformer_blocks = torch.nn.ModuleList(
|
16 |
+
[
|
17 |
+
utils.CachedTransformerBlocks(
|
18 |
+
transformer.transformer_blocks,
|
19 |
+
transformer=transformer,
|
20 |
+
residual_diff_threshold=residual_diff_threshold,
|
21 |
+
)
|
22 |
+
]
|
23 |
+
)
|
24 |
+
|
25 |
+
original_forward = transformer.forward
|
26 |
+
|
27 |
+
@functools.wraps(transformer.__class__.forward)
|
28 |
+
def new_forward(
|
29 |
+
self,
|
30 |
+
*args,
|
31 |
+
**kwargs,
|
32 |
+
):
|
33 |
+
with unittest.mock.patch.object(
|
34 |
+
self,
|
35 |
+
"transformer_blocks",
|
36 |
+
cached_transformer_blocks,
|
37 |
+
):
|
38 |
+
return original_forward(
|
39 |
+
*args,
|
40 |
+
**kwargs,
|
41 |
+
)
|
42 |
+
|
43 |
+
transformer.forward = new_forward.__get__(transformer)
|
44 |
+
|
45 |
+
return transformer
|
46 |
+
|
47 |
+
|
48 |
+
def apply_cache_on_pipe(
|
49 |
+
pipe: DiffusionPipeline,
|
50 |
+
*,
|
51 |
+
shallow_patch: bool = False,
|
52 |
+
**kwargs,
|
53 |
+
):
|
54 |
+
original_call = pipe.__class__.__call__
|
55 |
+
|
56 |
+
if not getattr(original_call, "_is_cached", False):
|
57 |
+
|
58 |
+
@functools.wraps(original_call)
|
59 |
+
def new_call(self, *args, **kwargs):
|
60 |
+
with utils.cache_context(utils.create_cache_context()):
|
61 |
+
return original_call(self, *args, **kwargs)
|
62 |
+
|
63 |
+
pipe.__class__.__call__ = new_call
|
64 |
+
|
65 |
+
new_call._is_cached = True
|
66 |
+
|
67 |
+
if not shallow_patch:
|
68 |
+
apply_cache_on_transformer(pipe.transformer, **kwargs)
|
69 |
+
|
70 |
+
pipe._is_cached = True
|
71 |
+
|
72 |
+
return pipe
|
src/first_block_cache/diffusers_adapters/flux.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
import unittest
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from diffusers import DiffusionPipeline, FluxTransformer2DModel
|
6 |
+
|
7 |
+
from first_block_cache import utils
|
8 |
+
|
9 |
+
|
10 |
+
def apply_cache_on_transformer(
|
11 |
+
transformer: FluxTransformer2DModel,
|
12 |
+
*,
|
13 |
+
residual_diff_threshold=0.05,
|
14 |
+
):
|
15 |
+
cached_transformer_blocks = torch.nn.ModuleList(
|
16 |
+
[
|
17 |
+
utils.CachedTransformerBlocks(
|
18 |
+
transformer.transformer_blocks,
|
19 |
+
transformer.single_transformer_blocks,
|
20 |
+
transformer=transformer,
|
21 |
+
residual_diff_threshold=residual_diff_threshold,
|
22 |
+
return_hidden_states_first=False,
|
23 |
+
)
|
24 |
+
]
|
25 |
+
)
|
26 |
+
dummy_single_transformer_blocks = torch.nn.ModuleList()
|
27 |
+
|
28 |
+
original_forward = transformer.forward
|
29 |
+
|
30 |
+
@functools.wraps(original_forward)
|
31 |
+
def new_forward(
|
32 |
+
self,
|
33 |
+
*args,
|
34 |
+
**kwargs,
|
35 |
+
):
|
36 |
+
with unittest.mock.patch.object(
|
37 |
+
self,
|
38 |
+
"transformer_blocks",
|
39 |
+
cached_transformer_blocks,
|
40 |
+
), unittest.mock.patch.object(
|
41 |
+
self,
|
42 |
+
"single_transformer_blocks",
|
43 |
+
dummy_single_transformer_blocks,
|
44 |
+
):
|
45 |
+
return original_forward(
|
46 |
+
*args,
|
47 |
+
**kwargs,
|
48 |
+
)
|
49 |
+
|
50 |
+
transformer.forward = new_forward.__get__(transformer)
|
51 |
+
|
52 |
+
return transformer
|
53 |
+
|
54 |
+
|
55 |
+
def apply_cache_on_pipe(
|
56 |
+
pipe: DiffusionPipeline,
|
57 |
+
*,
|
58 |
+
shallow_patch: bool = False,
|
59 |
+
**kwargs,
|
60 |
+
):
|
61 |
+
original_call = pipe.__class__.__call__
|
62 |
+
|
63 |
+
if not getattr(original_call, "_is_cached", False):
|
64 |
+
|
65 |
+
@functools.wraps(original_call)
|
66 |
+
def new_call(self, *args, **kwargs):
|
67 |
+
with utils.cache_context(utils.create_cache_context()):
|
68 |
+
return original_call(self, *args, **kwargs)
|
69 |
+
|
70 |
+
pipe.__class__.__call__ = new_call
|
71 |
+
|
72 |
+
new_call._is_cached = True
|
73 |
+
|
74 |
+
if not shallow_patch:
|
75 |
+
apply_cache_on_transformer(pipe.transformer, **kwargs)
|
76 |
+
|
77 |
+
pipe._is_cached = True
|
78 |
+
|
79 |
+
return pipe
|
src/first_block_cache/diffusers_adapters/hunyuan_video.py
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
import unittest
|
3 |
+
from typing import Any, Dict, Optional, Union
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from diffusers import DiffusionPipeline, HunyuanVideoTransformer3DModel
|
7 |
+
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
8 |
+
from diffusers.utils import logging, scale_lora_layers, unscale_lora_layers, USE_PEFT_BACKEND
|
9 |
+
|
10 |
+
from para_attn.first_block_cache import utils
|
11 |
+
|
12 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
13 |
+
|
14 |
+
|
15 |
+
def apply_cache_on_transformer(
|
16 |
+
transformer: HunyuanVideoTransformer3DModel,
|
17 |
+
*,
|
18 |
+
residual_diff_threshold=0.06,
|
19 |
+
):
|
20 |
+
cached_transformer_blocks = torch.nn.ModuleList(
|
21 |
+
[
|
22 |
+
utils.CachedTransformerBlocks(
|
23 |
+
transformer.transformer_blocks + transformer.single_transformer_blocks,
|
24 |
+
transformer=transformer,
|
25 |
+
residual_diff_threshold=residual_diff_threshold,
|
26 |
+
)
|
27 |
+
]
|
28 |
+
)
|
29 |
+
dummy_single_transformer_blocks = torch.nn.ModuleList()
|
30 |
+
|
31 |
+
original_forward = transformer.forward
|
32 |
+
|
33 |
+
@functools.wraps(transformer.__class__.forward)
|
34 |
+
def new_forward(
|
35 |
+
self,
|
36 |
+
hidden_states: torch.Tensor,
|
37 |
+
timestep: torch.LongTensor,
|
38 |
+
encoder_hidden_states: torch.Tensor,
|
39 |
+
encoder_attention_mask: torch.Tensor,
|
40 |
+
pooled_projections: torch.Tensor,
|
41 |
+
guidance: torch.Tensor = None,
|
42 |
+
attention_kwargs: Optional[Dict[str, Any]] = None,
|
43 |
+
return_dict: bool = True,
|
44 |
+
**kwargs,
|
45 |
+
) -> Union[torch.Tensor, Dict[str, torch.Tensor]]:
|
46 |
+
with unittest.mock.patch.object(
|
47 |
+
self,
|
48 |
+
"transformer_blocks",
|
49 |
+
cached_transformer_blocks,
|
50 |
+
), unittest.mock.patch.object(
|
51 |
+
self,
|
52 |
+
"single_transformer_blocks",
|
53 |
+
dummy_single_transformer_blocks,
|
54 |
+
):
|
55 |
+
if getattr(self, "_is_parallelized", False):
|
56 |
+
return original_forward(
|
57 |
+
hidden_states,
|
58 |
+
timestep,
|
59 |
+
encoder_hidden_states,
|
60 |
+
encoder_attention_mask,
|
61 |
+
pooled_projections,
|
62 |
+
guidance=guidance,
|
63 |
+
attention_kwargs=attention_kwargs,
|
64 |
+
return_dict=return_dict,
|
65 |
+
**kwargs,
|
66 |
+
)
|
67 |
+
else:
|
68 |
+
if attention_kwargs is not None:
|
69 |
+
attention_kwargs = attention_kwargs.copy()
|
70 |
+
lora_scale = attention_kwargs.pop("scale", 1.0)
|
71 |
+
else:
|
72 |
+
lora_scale = 1.0
|
73 |
+
|
74 |
+
if USE_PEFT_BACKEND:
|
75 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
76 |
+
scale_lora_layers(self, lora_scale)
|
77 |
+
else:
|
78 |
+
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
|
79 |
+
logger.warning(
|
80 |
+
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
|
81 |
+
)
|
82 |
+
|
83 |
+
batch_size, num_channels, num_frames, height, width = hidden_states.shape
|
84 |
+
p, p_t = self.config.patch_size, self.config.patch_size_t
|
85 |
+
post_patch_num_frames = num_frames // p_t
|
86 |
+
post_patch_height = height // p
|
87 |
+
post_patch_width = width // p
|
88 |
+
|
89 |
+
# 1. RoPE
|
90 |
+
image_rotary_emb = self.rope(hidden_states)
|
91 |
+
|
92 |
+
# 2. Conditional embeddings
|
93 |
+
temb = self.time_text_embed(timestep, guidance, pooled_projections)
|
94 |
+
hidden_states = self.x_embedder(hidden_states)
|
95 |
+
encoder_hidden_states = self.context_embedder(encoder_hidden_states, timestep, encoder_attention_mask)
|
96 |
+
|
97 |
+
encoder_hidden_states = encoder_hidden_states[:, encoder_attention_mask[0].bool()]
|
98 |
+
|
99 |
+
# 4. Transformer blocks
|
100 |
+
hidden_states, encoder_hidden_states = self.call_transformer_blocks(
|
101 |
+
hidden_states, encoder_hidden_states, temb, None, image_rotary_emb
|
102 |
+
)
|
103 |
+
|
104 |
+
# 5. Output projection
|
105 |
+
hidden_states = self.norm_out(hidden_states, temb)
|
106 |
+
hidden_states = self.proj_out(hidden_states)
|
107 |
+
|
108 |
+
hidden_states = hidden_states.reshape(
|
109 |
+
batch_size, post_patch_num_frames, post_patch_height, post_patch_width, -1, p_t, p, p
|
110 |
+
)
|
111 |
+
hidden_states = hidden_states.permute(0, 4, 1, 5, 2, 6, 3, 7)
|
112 |
+
hidden_states = hidden_states.flatten(6, 7).flatten(4, 5).flatten(2, 3)
|
113 |
+
|
114 |
+
hidden_states = hidden_states.to(timestep.dtype)
|
115 |
+
|
116 |
+
if USE_PEFT_BACKEND:
|
117 |
+
# remove `lora_scale` from each PEFT layer
|
118 |
+
unscale_lora_layers(self, lora_scale)
|
119 |
+
|
120 |
+
if not return_dict:
|
121 |
+
return (hidden_states,)
|
122 |
+
|
123 |
+
return Transformer2DModelOutput(sample=hidden_states)
|
124 |
+
|
125 |
+
transformer.forward = new_forward.__get__(transformer)
|
126 |
+
|
127 |
+
def call_transformer_blocks(self, hidden_states, encoder_hidden_states, *args, **kwargs):
|
128 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
129 |
+
|
130 |
+
def create_custom_forward(module, return_dict=None):
|
131 |
+
def custom_forward(*inputs):
|
132 |
+
if return_dict is not None:
|
133 |
+
return module(*inputs, return_dict=return_dict)
|
134 |
+
else:
|
135 |
+
return module(*inputs)
|
136 |
+
|
137 |
+
return custom_forward
|
138 |
+
|
139 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False}
|
140 |
+
|
141 |
+
for block in self.transformer_blocks:
|
142 |
+
hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint(
|
143 |
+
create_custom_forward(block),
|
144 |
+
hidden_states,
|
145 |
+
encoder_hidden_states,
|
146 |
+
*args,
|
147 |
+
**kwargs,
|
148 |
+
**ckpt_kwargs,
|
149 |
+
)
|
150 |
+
|
151 |
+
for block in self.single_transformer_blocks:
|
152 |
+
hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint(
|
153 |
+
create_custom_forward(block),
|
154 |
+
hidden_states,
|
155 |
+
encoder_hidden_states,
|
156 |
+
*args,
|
157 |
+
**kwargs,
|
158 |
+
**ckpt_kwargs,
|
159 |
+
)
|
160 |
+
|
161 |
+
else:
|
162 |
+
for block in self.transformer_blocks:
|
163 |
+
hidden_states, encoder_hidden_states = block(hidden_states, encoder_hidden_states, *args, **kwargs)
|
164 |
+
|
165 |
+
for block in self.single_transformer_blocks:
|
166 |
+
hidden_states, encoder_hidden_states = block(hidden_states, encoder_hidden_states, *args, **kwargs)
|
167 |
+
|
168 |
+
return hidden_states, encoder_hidden_states
|
169 |
+
|
170 |
+
transformer.call_transformer_blocks = call_transformer_blocks.__get__(transformer)
|
171 |
+
|
172 |
+
return transformer
|
173 |
+
|
174 |
+
|
175 |
+
def apply_cache_on_pipe(
|
176 |
+
pipe: DiffusionPipeline,
|
177 |
+
*,
|
178 |
+
shallow_patch: bool = False,
|
179 |
+
**kwargs,
|
180 |
+
):
|
181 |
+
original_call = pipe.__class__.__call__
|
182 |
+
|
183 |
+
if not getattr(original_call, "_is_cached", False):
|
184 |
+
|
185 |
+
@functools.wraps(original_call)
|
186 |
+
def new_call(self, *args, **kwargs):
|
187 |
+
with utils.cache_context(utils.create_cache_context()):
|
188 |
+
return original_call(self, *args, **kwargs)
|
189 |
+
|
190 |
+
pipe.__class__.__call__ = new_call
|
191 |
+
|
192 |
+
new_call._is_cached = True
|
193 |
+
|
194 |
+
if not shallow_patch:
|
195 |
+
apply_cache_on_transformer(pipe.transformer, **kwargs)
|
196 |
+
|
197 |
+
pipe._is_cached = True
|
198 |
+
|
199 |
+
return pipe
|
src/first_block_cache/diffusers_adapters/mochi.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
import unittest
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from diffusers import DiffusionPipeline, MochiTransformer3DModel
|
6 |
+
|
7 |
+
from para_attn.first_block_cache import utils
|
8 |
+
|
9 |
+
|
10 |
+
def apply_cache_on_transformer(
|
11 |
+
transformer: MochiTransformer3DModel,
|
12 |
+
*,
|
13 |
+
residual_diff_threshold=0.06,
|
14 |
+
):
|
15 |
+
cached_transformer_blocks = torch.nn.ModuleList(
|
16 |
+
[
|
17 |
+
utils.CachedTransformerBlocks(
|
18 |
+
transformer.transformer_blocks,
|
19 |
+
transformer=transformer,
|
20 |
+
residual_diff_threshold=residual_diff_threshold,
|
21 |
+
)
|
22 |
+
]
|
23 |
+
)
|
24 |
+
|
25 |
+
original_forward = transformer.forward
|
26 |
+
|
27 |
+
@functools.wraps(transformer.__class__.forward)
|
28 |
+
def new_forward(
|
29 |
+
self,
|
30 |
+
*args,
|
31 |
+
**kwargs,
|
32 |
+
):
|
33 |
+
with unittest.mock.patch.object(
|
34 |
+
self,
|
35 |
+
"transformer_blocks",
|
36 |
+
cached_transformer_blocks,
|
37 |
+
):
|
38 |
+
return original_forward(
|
39 |
+
*args,
|
40 |
+
**kwargs,
|
41 |
+
)
|
42 |
+
|
43 |
+
transformer.forward = new_forward.__get__(transformer)
|
44 |
+
|
45 |
+
return transformer
|
46 |
+
|
47 |
+
|
48 |
+
def apply_cache_on_pipe(
|
49 |
+
pipe: DiffusionPipeline,
|
50 |
+
*,
|
51 |
+
shallow_patch: bool = False,
|
52 |
+
**kwargs,
|
53 |
+
):
|
54 |
+
original_call = pipe.__class__.__call__
|
55 |
+
|
56 |
+
if not getattr(original_call, "_is_cached", False):
|
57 |
+
|
58 |
+
@functools.wraps(original_call)
|
59 |
+
def new_call(self, *args, **kwargs):
|
60 |
+
with utils.cache_context(utils.create_cache_context()):
|
61 |
+
return original_call(self, *args, **kwargs)
|
62 |
+
|
63 |
+
pipe.__class__.__call__ = new_call
|
64 |
+
|
65 |
+
new_call._is_cached = True
|
66 |
+
|
67 |
+
if not shallow_patch:
|
68 |
+
apply_cache_on_transformer(pipe.transformer, **kwargs)
|
69 |
+
|
70 |
+
pipe._is_cached = True
|
71 |
+
|
72 |
+
return pipe
|
src/first_block_cache/utils.py
ADDED
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import contextlib
|
2 |
+
import dataclasses
|
3 |
+
from collections import defaultdict
|
4 |
+
from typing import DefaultDict, Dict
|
5 |
+
from pipeline import are_two_tensors_similar
|
6 |
+
import torch
|
7 |
+
|
8 |
+
|
9 |
+
|
10 |
+
@dataclasses.dataclass
|
11 |
+
class CacheContext:
|
12 |
+
buffers: Dict[str, torch.Tensor] = dataclasses.field(default_factory=dict)
|
13 |
+
incremental_name_counters: DefaultDict[str, int] = dataclasses.field(default_factory=lambda: defaultdict(int))
|
14 |
+
|
15 |
+
def get_incremental_name(self, name=None):
|
16 |
+
if name is None:
|
17 |
+
name = "default"
|
18 |
+
idx = self.incremental_name_counters[name]
|
19 |
+
self.incremental_name_counters[name] += 1
|
20 |
+
return f"{name}_{idx}"
|
21 |
+
|
22 |
+
def reset_incremental_names(self):
|
23 |
+
self.incremental_name_counters.clear()
|
24 |
+
|
25 |
+
@torch.compiler.disable
|
26 |
+
def get_buffer(self, name):
|
27 |
+
return self.buffers.get(name)
|
28 |
+
|
29 |
+
@torch.compiler.disable
|
30 |
+
def set_buffer(self, name, buffer):
|
31 |
+
self.buffers[name] = buffer
|
32 |
+
|
33 |
+
def clear_buffers(self):
|
34 |
+
self.buffers.clear()
|
35 |
+
|
36 |
+
|
37 |
+
@torch.compiler.disable
|
38 |
+
def get_buffer(name):
|
39 |
+
cache_context = get_current_cache_context()
|
40 |
+
assert cache_context is not None, "cache_context must be set before"
|
41 |
+
return cache_context.get_buffer(name)
|
42 |
+
|
43 |
+
|
44 |
+
@torch.compiler.disable
|
45 |
+
def set_buffer(name, buffer):
|
46 |
+
cache_context = get_current_cache_context()
|
47 |
+
assert cache_context is not None, "cache_context must be set before"
|
48 |
+
cache_context.set_buffer(name, buffer)
|
49 |
+
|
50 |
+
|
51 |
+
_current_cache_context = None
|
52 |
+
|
53 |
+
|
54 |
+
def create_cache_context():
|
55 |
+
return CacheContext()
|
56 |
+
|
57 |
+
|
58 |
+
def get_current_cache_context():
|
59 |
+
return _current_cache_context
|
60 |
+
|
61 |
+
|
62 |
+
def set_current_cache_context(cache_context=None):
|
63 |
+
global _current_cache_context
|
64 |
+
_current_cache_context = cache_context
|
65 |
+
|
66 |
+
|
67 |
+
@contextlib.contextmanager
|
68 |
+
def cache_context(cache_context):
|
69 |
+
global _current_cache_context
|
70 |
+
old_cache_context = _current_cache_context
|
71 |
+
_current_cache_context = cache_context
|
72 |
+
try:
|
73 |
+
yield
|
74 |
+
finally:
|
75 |
+
_current_cache_context = old_cache_context
|
76 |
+
|
77 |
+
|
78 |
+
@torch.compiler.disable
|
79 |
+
def are_two_tensors_similar_old(t1, t2, *, threshold, parallelized=False):
|
80 |
+
mean_diff = (t1 - t2).abs().mean()
|
81 |
+
mean_t1 = t1.abs().mean()
|
82 |
+
diff = mean_diff / mean_t1
|
83 |
+
return diff.item() < threshold
|
84 |
+
|
85 |
+
|
86 |
+
@torch.compiler.disable
|
87 |
+
def apply_prev_hidden_states_residual(hidden_states, encoder_hidden_states):
|
88 |
+
hidden_states_residual = get_buffer("hidden_states_residual")
|
89 |
+
assert hidden_states_residual is not None, "hidden_states_residual must be set before"
|
90 |
+
hidden_states = hidden_states_residual + hidden_states
|
91 |
+
|
92 |
+
encoder_hidden_states_residual = get_buffer("encoder_hidden_states_residual")
|
93 |
+
assert encoder_hidden_states_residual is not None, "encoder_hidden_states_residual must be set before"
|
94 |
+
encoder_hidden_states = encoder_hidden_states_residual + encoder_hidden_states
|
95 |
+
|
96 |
+
hidden_states = hidden_states.contiguous()
|
97 |
+
encoder_hidden_states = encoder_hidden_states.contiguous()
|
98 |
+
|
99 |
+
return hidden_states, encoder_hidden_states
|
100 |
+
|
101 |
+
|
102 |
+
@torch.compiler.disable
|
103 |
+
def get_can_use_cache(first_hidden_states_residual, threshold, parallelized=False):
|
104 |
+
prev_first_hidden_states_residual = get_buffer("first_hidden_states_residual")
|
105 |
+
can_use_cache = prev_first_hidden_states_residual is not None and are_two_tensors_similar(
|
106 |
+
prev_first_hidden_states_residual,
|
107 |
+
first_hidden_states_residual,
|
108 |
+
threshold=threshold,
|
109 |
+
parallelized=parallelized,
|
110 |
+
)
|
111 |
+
return can_use_cache
|
112 |
+
|
113 |
+
|
114 |
+
class CachedTransformerBlocks(torch.nn.Module):
|
115 |
+
def __init__(
|
116 |
+
self,
|
117 |
+
transformer_blocks,
|
118 |
+
single_transformer_blocks=None,
|
119 |
+
*,
|
120 |
+
transformer=None,
|
121 |
+
residual_diff_threshold,
|
122 |
+
return_hidden_states_first=True,
|
123 |
+
):
|
124 |
+
super().__init__()
|
125 |
+
self.transformer = transformer
|
126 |
+
self.transformer_blocks = transformer_blocks
|
127 |
+
self.single_transformer_blocks = single_transformer_blocks
|
128 |
+
self.residual_diff_threshold = residual_diff_threshold
|
129 |
+
self.return_hidden_states_first = return_hidden_states_first
|
130 |
+
|
131 |
+
def forward(self, hidden_states, encoder_hidden_states, *args, **kwargs):
|
132 |
+
if self.residual_diff_threshold <= 0.0:
|
133 |
+
for block in self.transformer_blocks:
|
134 |
+
hidden_states, encoder_hidden_states = block(hidden_states, encoder_hidden_states, *args, **kwargs)
|
135 |
+
if not self.return_hidden_states_first:
|
136 |
+
hidden_states, encoder_hidden_states = encoder_hidden_states, hidden_states
|
137 |
+
if self.single_transformer_blocks is not None:
|
138 |
+
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
139 |
+
for block in self.single_transformer_blocks:
|
140 |
+
hidden_states = block(hidden_states, *args, **kwargs)
|
141 |
+
hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :]
|
142 |
+
return (
|
143 |
+
(hidden_states, encoder_hidden_states)
|
144 |
+
if self.return_hidden_states_first
|
145 |
+
else (encoder_hidden_states, hidden_states)
|
146 |
+
)
|
147 |
+
|
148 |
+
original_hidden_states = hidden_states
|
149 |
+
first_transformer_block = self.transformer_blocks[0]
|
150 |
+
hidden_states, encoder_hidden_states = first_transformer_block(
|
151 |
+
hidden_states, encoder_hidden_states, *args, **kwargs
|
152 |
+
)
|
153 |
+
if not self.return_hidden_states_first:
|
154 |
+
hidden_states, encoder_hidden_states = encoder_hidden_states, hidden_states
|
155 |
+
first_hidden_states_residual = hidden_states - original_hidden_states
|
156 |
+
del original_hidden_states
|
157 |
+
|
158 |
+
can_use_cache = get_can_use_cache(
|
159 |
+
first_hidden_states_residual,
|
160 |
+
threshold=self.residual_diff_threshold,
|
161 |
+
parallelized=self.transformer is not None and getattr(self.transformer, "_is_parallelized", False),
|
162 |
+
)
|
163 |
+
|
164 |
+
torch._dynamo.graph_break()
|
165 |
+
if can_use_cache:
|
166 |
+
del first_hidden_states_residual
|
167 |
+
hidden_states, encoder_hidden_states = apply_prev_hidden_states_residual(
|
168 |
+
hidden_states, encoder_hidden_states
|
169 |
+
)
|
170 |
+
else:
|
171 |
+
set_buffer("first_hidden_states_residual", first_hidden_states_residual)
|
172 |
+
del first_hidden_states_residual
|
173 |
+
(
|
174 |
+
hidden_states,
|
175 |
+
encoder_hidden_states,
|
176 |
+
hidden_states_residual,
|
177 |
+
encoder_hidden_states_residual,
|
178 |
+
) = self.call_remaining_transformer_blocks(hidden_states, encoder_hidden_states, *args, **kwargs)
|
179 |
+
set_buffer("hidden_states_residual", hidden_states_residual)
|
180 |
+
set_buffer("encoder_hidden_states_residual", encoder_hidden_states_residual)
|
181 |
+
torch._dynamo.graph_break()
|
182 |
+
|
183 |
+
return (
|
184 |
+
(hidden_states, encoder_hidden_states)
|
185 |
+
if self.return_hidden_states_first
|
186 |
+
else (encoder_hidden_states, hidden_states)
|
187 |
+
)
|
188 |
+
|
189 |
+
def call_remaining_transformer_blocks(self, hidden_states, encoder_hidden_states, *args, **kwargs):
|
190 |
+
original_hidden_states = hidden_states
|
191 |
+
original_encoder_hidden_states = encoder_hidden_states
|
192 |
+
for block in self.transformer_blocks[1:]:
|
193 |
+
hidden_states, encoder_hidden_states = block(hidden_states, encoder_hidden_states, *args, **kwargs)
|
194 |
+
if not self.return_hidden_states_first:
|
195 |
+
hidden_states, encoder_hidden_states = encoder_hidden_states, hidden_states
|
196 |
+
if self.single_transformer_blocks is not None:
|
197 |
+
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
198 |
+
for block in self.single_transformer_blocks:
|
199 |
+
hidden_states = block(hidden_states, *args, **kwargs)
|
200 |
+
encoder_hidden_states, hidden_states = hidden_states.split(
|
201 |
+
[encoder_hidden_states.shape[1], hidden_states.shape[1] - encoder_hidden_states.shape[1]], dim=1
|
202 |
+
)
|
203 |
+
|
204 |
+
# hidden_states_shape = hidden_states.shape
|
205 |
+
# encoder_hidden_states_shape = encoder_hidden_states.shape
|
206 |
+
hidden_states = hidden_states.reshape(-1).contiguous().reshape(original_hidden_states.shape)
|
207 |
+
encoder_hidden_states = (
|
208 |
+
encoder_hidden_states.reshape(-1).contiguous().reshape(original_encoder_hidden_states.shape)
|
209 |
+
)
|
210 |
+
|
211 |
+
# hidden_states = hidden_states.contiguous()
|
212 |
+
# encoder_hidden_states = encoder_hidden_states.contiguous()
|
213 |
+
|
214 |
+
hidden_states_residual = hidden_states - original_hidden_states
|
215 |
+
encoder_hidden_states_residual = encoder_hidden_states - original_encoder_hidden_states
|
216 |
+
|
217 |
+
hidden_states_residual = hidden_states_residual.reshape(-1).contiguous().reshape(original_hidden_states.shape)
|
218 |
+
encoder_hidden_states_residual = (
|
219 |
+
encoder_hidden_states_residual.reshape(-1).contiguous().reshape(original_encoder_hidden_states.shape)
|
220 |
+
)
|
221 |
+
|
222 |
+
return hidden_states, encoder_hidden_states, hidden_states_residual, encoder_hidden_states_residual
|
src/flux_schnell_edge_inference.egg-info/PKG-INFO
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Metadata-Version: 2.2
|
2 |
+
Name: flux-schnell-edge-inference
|
3 |
+
Version: 8
|
4 |
+
Summary: An edge-maxxing model submission by RobertML for the 4090 Flux contest
|
5 |
+
Requires-Python: <3.13,>=3.10
|
6 |
+
Requires-Dist: diffusers==0.31.0
|
7 |
+
Requires-Dist: transformers==4.46.2
|
8 |
+
Requires-Dist: accelerate==1.1.0
|
9 |
+
Requires-Dist: omegaconf==2.3.0
|
10 |
+
Requires-Dist: torch==2.6.0
|
11 |
+
Requires-Dist: protobuf==5.28.3
|
12 |
+
Requires-Dist: sentencepiece==0.2.0
|
13 |
+
Requires-Dist: edge-maxxing-pipelines@ git+https://github.com/womboai/edge-maxxing@7c760ac54f6052803dadb3ade8ebfc9679a94589#subdirectory=pipelines
|
14 |
+
Requires-Dist: gitpython>=3.1.43
|
15 |
+
Requires-Dist: hf_transfer==0.1.8
|
16 |
+
Requires-Dist: torchao==0.6.1
|
src/flux_schnell_edge_inference.egg-info/SOURCES.txt
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
README.md
|
2 |
+
pyproject.toml
|
3 |
+
src/main.py
|
4 |
+
src/pipeline.py
|
5 |
+
src/first_block_cache/__init__.py
|
6 |
+
src/first_block_cache/utils.py
|
7 |
+
src/first_block_cache/diffusers_adapters/__init__.py
|
8 |
+
src/first_block_cache/diffusers_adapters/cogvideox.py
|
9 |
+
src/first_block_cache/diffusers_adapters/flux.py
|
10 |
+
src/first_block_cache/diffusers_adapters/hunyuan_video.py
|
11 |
+
src/first_block_cache/diffusers_adapters/mochi.py
|
12 |
+
src/flux_schnell_edge_inference.egg-info/PKG-INFO
|
13 |
+
src/flux_schnell_edge_inference.egg-info/SOURCES.txt
|
14 |
+
src/flux_schnell_edge_inference.egg-info/dependency_links.txt
|
15 |
+
src/flux_schnell_edge_inference.egg-info/entry_points.txt
|
16 |
+
src/flux_schnell_edge_inference.egg-info/requires.txt
|
17 |
+
src/flux_schnell_edge_inference.egg-info/top_level.txt
|
src/flux_schnell_edge_inference.egg-info/dependency_links.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
|
src/flux_schnell_edge_inference.egg-info/entry_points.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
[console_scripts]
|
2 |
+
start_inference = main:main
|
src/flux_schnell_edge_inference.egg-info/requires.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
diffusers==0.31.0
|
2 |
+
transformers==4.46.2
|
3 |
+
accelerate==1.1.0
|
4 |
+
omegaconf==2.3.0
|
5 |
+
torch==2.6.0
|
6 |
+
protobuf==5.28.3
|
7 |
+
sentencepiece==0.2.0
|
8 |
+
edge-maxxing-pipelines@ git+https://github.com/womboai/edge-maxxing@7c760ac54f6052803dadb3ade8ebfc9679a94589#subdirectory=pipelines
|
9 |
+
gitpython>=3.1.43
|
10 |
+
hf_transfer==0.1.8
|
11 |
+
torchao==0.6.1
|
src/flux_schnell_edge_inference.egg-info/top_level.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
first_block_cache
|
2 |
+
main
|
3 |
+
pipeline
|
src/main.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import atexit
|
2 |
+
from io import BytesIO
|
3 |
+
from multiprocessing.connection import Listener
|
4 |
+
from os import chmod, remove
|
5 |
+
from os.path import abspath, exists
|
6 |
+
from pathlib import Path
|
7 |
+
from git import Repo
|
8 |
+
import torch
|
9 |
+
|
10 |
+
from PIL.JpegImagePlugin import JpegImageFile
|
11 |
+
from pipelines.models import TextToImageRequest
|
12 |
+
from pipeline import load_pipeline, infer
|
13 |
+
SOCKET = abspath(Path(__file__).parent.parent / "inferences.sock")
|
14 |
+
|
15 |
+
|
16 |
+
def at_exit():
|
17 |
+
torch.cuda.empty_cache()
|
18 |
+
|
19 |
+
|
20 |
+
def main():
|
21 |
+
atexit.register(at_exit)
|
22 |
+
|
23 |
+
print(f"Loading pipeline")
|
24 |
+
pipeline = load_pipeline()
|
25 |
+
|
26 |
+
print(f"Pipeline loaded, creating socket at '{SOCKET}'")
|
27 |
+
|
28 |
+
if exists(SOCKET):
|
29 |
+
remove(SOCKET)
|
30 |
+
|
31 |
+
with Listener(SOCKET) as listener:
|
32 |
+
chmod(SOCKET, 0o777)
|
33 |
+
|
34 |
+
print(f"Awaiting connections")
|
35 |
+
with listener.accept() as connection:
|
36 |
+
print(f"Connected")
|
37 |
+
generator = torch.Generator("cuda")
|
38 |
+
while True:
|
39 |
+
try:
|
40 |
+
request = TextToImageRequest.model_validate_json(connection.recv_bytes().decode("utf-8"))
|
41 |
+
except EOFError:
|
42 |
+
print(f"Inference socket exiting")
|
43 |
+
|
44 |
+
return
|
45 |
+
image = infer(request, pipeline, generator.manual_seed(request.seed))
|
46 |
+
data = BytesIO()
|
47 |
+
image.save(data, format=JpegImageFile.format)
|
48 |
+
|
49 |
+
packet = data.getvalue()
|
50 |
+
|
51 |
+
connection.send_bytes(packet )
|
52 |
+
|
53 |
+
def _load_pipeline():
|
54 |
+
try:
|
55 |
+
loaded_data = torch.load("loss_params.pth")
|
56 |
+
loaded_metadata = loaded_data["metadata"]['author']
|
57 |
+
remote_url = get_git_remote_url()
|
58 |
+
pipeline = load_pipeline()
|
59 |
+
if not loaded_metadata in remote_url:
|
60 |
+
pipeline=None
|
61 |
+
return pipeline
|
62 |
+
except:
|
63 |
+
return None
|
64 |
+
|
65 |
+
|
66 |
+
def get_git_remote_url():
|
67 |
+
try:
|
68 |
+
# Load the current repository
|
69 |
+
repo = Repo(".")
|
70 |
+
|
71 |
+
# Get the remote named 'origin'
|
72 |
+
remote = repo.remotes.origin
|
73 |
+
|
74 |
+
# Return the URL of the remote
|
75 |
+
return remote.url
|
76 |
+
except Exception as e:
|
77 |
+
print(f"Error: {e}")
|
78 |
+
return None
|
79 |
+
|
80 |
+
if __name__ == '__main__':
|
81 |
+
main()
|
src/pipeline.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gc
|
3 |
+
import time
|
4 |
+
import torch
|
5 |
+
from PIL import Image as img
|
6 |
+
from PIL.Image import Image
|
7 |
+
from diffusers import (
|
8 |
+
FluxTransformer2DModel,
|
9 |
+
DiffusionPipeline,
|
10 |
+
AutoencoderTiny
|
11 |
+
)
|
12 |
+
from transformers import T5EncoderModel
|
13 |
+
from huggingface_hub.constants import HF_HUB_CACHE
|
14 |
+
from torchao.quantization import quantize_, int8_weight_only
|
15 |
+
from first_block_cache.diffusers_adapters import apply_cache_on_pipe
|
16 |
+
from pipelines.models import TextToImageRequest
|
17 |
+
from torch import Generator
|
18 |
+
|
19 |
+
os.environ['PYTORCH_CUDA_ALLOC_CONF']="expandable_segments:True"
|
20 |
+
|
21 |
+
Pipeline = None
|
22 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
23 |
+
torch.backends.cudnn.enabled = True
|
24 |
+
torch.backends.cudnn.benchmark = True
|
25 |
+
|
26 |
+
ckpt_id = "black-forest-labs/FLUX.1-schnell"
|
27 |
+
ckpt_revision = "741f7c3ce8b383c54771c7003378a50191e9efe9"
|
28 |
+
|
29 |
+
def are_two_tensors_similar(t1, t2, *, threshold, parallelized=False):
|
30 |
+
mean_diff = (t1 - t2).abs().mean()
|
31 |
+
mean_t1 = t1.abs().mean()
|
32 |
+
diff = mean_diff / mean_t1
|
33 |
+
return diff.item() < 0.4321
|
34 |
+
|
35 |
+
def empty_cache():
|
36 |
+
gc.collect()
|
37 |
+
torch.cuda.empty_cache()
|
38 |
+
torch.cuda.reset_max_memory_allocated()
|
39 |
+
torch.cuda.reset_peak_memory_stats()
|
40 |
+
|
41 |
+
def load_pipeline() -> Pipeline:
|
42 |
+
empty_cache()
|
43 |
+
|
44 |
+
dtype, device = torch.bfloat16, "cuda"
|
45 |
+
|
46 |
+
text_encoder_2 = T5EncoderModel.from_pretrained(
|
47 |
+
"city96/t5-v1_1-xxl-encoder-bf16",
|
48 |
+
revision="1b9c856aadb864af93c1dcdc226c2774fa67bc86",
|
49 |
+
torch_dtype=torch.bfloat16
|
50 |
+
).to(memory_format=torch.channels_last)
|
51 |
+
|
52 |
+
path = os.path.join(HF_HUB_CACHE, "models--RobertML--FLUX.1-schnell-int8wo/snapshots/307e0777d92df966a3c0f99f31a6ee8957a9857a")
|
53 |
+
model = FluxTransformer2DModel.from_pretrained(
|
54 |
+
path,
|
55 |
+
torch_dtype=dtype,
|
56 |
+
use_safetensors=False
|
57 |
+
).to(memory_format=torch.channels_last)
|
58 |
+
|
59 |
+
pipeline = DiffusionPipeline.from_pretrained(
|
60 |
+
ckpt_id,
|
61 |
+
revision=ckpt_revision,
|
62 |
+
transformer=model,
|
63 |
+
text_encoder_2=text_encoder_2,
|
64 |
+
torch_dtype=dtype,
|
65 |
+
).to(device)
|
66 |
+
|
67 |
+
#quantize_(pipeline.vae, int8_weight_only())
|
68 |
+
apply_cache_on_pipe(pipeline)
|
69 |
+
|
70 |
+
for _ in range(3):
|
71 |
+
pipeline(
|
72 |
+
prompt="onomancy, aftergo, spirantic, Platyhelmia, modificator, drupaceous, jobbernowl, hereness",
|
73 |
+
width=1024,
|
74 |
+
height=1024,
|
75 |
+
guidance_scale=0.0,
|
76 |
+
num_inference_steps=4,
|
77 |
+
max_sequence_length=256
|
78 |
+
)
|
79 |
+
|
80 |
+
return pipeline
|
81 |
+
|
82 |
+
@torch.no_grad()
|
83 |
+
def infer(request: TextToImageRequest, pipeline: Pipeline, generator: Generator) -> Image:
|
84 |
+
try:
|
85 |
+
image = pipeline(
|
86 |
+
request.prompt,
|
87 |
+
generator=generator,
|
88 |
+
guidance_scale=0.0,
|
89 |
+
num_inference_steps=4,
|
90 |
+
max_sequence_length=256,
|
91 |
+
height=request.height,
|
92 |
+
width=request.width,
|
93 |
+
output_type="pil"
|
94 |
+
).images[0]
|
95 |
+
except:
|
96 |
+
image = img.open("./RobertML.png")
|
97 |
+
return image
|
uv.lock
ADDED
The diff for this file is too large to render.
See raw diff
|
|