Upload folder using huggingface_hub
Browse files- config.json +26 -0
- generation_config.json +9 -0
- latest +1 -0
- pytorch_model-00001-of-00003.bin +3 -0
- pytorch_model-00002-of-00003.bin +3 -0
- pytorch_model-00003-of-00003.bin +3 -0
- pytorch_model.bin.index.json +410 -0
- rng_state_0.pth +3 -0
- rng_state_1.pth +3 -0
- rng_state_2.pth +3 -0
- rng_state_3.pth +3 -0
- special_tokens_map.json +24 -0
- tokenizer.model +3 -0
- tokenizer_config.json +35 -0
- trainer_state.json +3598 -0
- training_args.bin +3 -0
- zero_to_fp32.py +578 -0
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/workspace/models/llama2-13b-cb",
|
3 |
+
"architectures": [
|
4 |
+
"LlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"bos_token_id": 1,
|
7 |
+
"eos_token_id": 2,
|
8 |
+
"hidden_act": "silu",
|
9 |
+
"hidden_size": 5120,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 13824,
|
12 |
+
"max_position_embeddings": 4096,
|
13 |
+
"model_type": "llama",
|
14 |
+
"num_attention_heads": 40,
|
15 |
+
"num_hidden_layers": 40,
|
16 |
+
"num_key_value_heads": 40,
|
17 |
+
"pad_token_id": 0,
|
18 |
+
"pretraining_tp": 1,
|
19 |
+
"rms_norm_eps": 1e-05,
|
20 |
+
"rope_scaling": null,
|
21 |
+
"tie_word_embeddings": false,
|
22 |
+
"torch_dtype": "bfloat16",
|
23 |
+
"transformers_version": "4.31.0",
|
24 |
+
"use_cache": false,
|
25 |
+
"vocab_size": 32000
|
26 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"pad_token_id": 0,
|
6 |
+
"temperature": 0.9,
|
7 |
+
"top_p": 0.6,
|
8 |
+
"transformers_version": "4.31.0"
|
9 |
+
}
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step597
|
pytorch_model-00001-of-00003.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bfe91249a354a24f767b216b84df34aaff87c0c579f9f2ab83eac91e04d97a13
|
3 |
+
size 9948726510
|
pytorch_model-00002-of-00003.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8e5175bcb45696a42b625ef454d60e86f68d1ee1fa8b80343da166c966f7903e
|
3 |
+
size 9904162976
|
pytorch_model-00003-of-00003.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0a6ee250566fb5270b530051d28d8a7fc79c3cd98ea18da05c6244a5934659d2
|
3 |
+
size 6178982473
|
pytorch_model.bin.index.json
ADDED
@@ -0,0 +1,410 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 26031733760
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "pytorch_model-00003-of-00003.bin",
|
7 |
+
"model.embed_tokens.weight": "pytorch_model-00001-of-00003.bin",
|
8 |
+
"model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
16 |
+
"model.layers.0.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
17 |
+
"model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
18 |
+
"model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
19 |
+
"model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
20 |
+
"model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
21 |
+
"model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
22 |
+
"model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
23 |
+
"model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
24 |
+
"model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
25 |
+
"model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
26 |
+
"model.layers.1.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
27 |
+
"model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
28 |
+
"model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
29 |
+
"model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
30 |
+
"model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
31 |
+
"model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
32 |
+
"model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
33 |
+
"model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
34 |
+
"model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
35 |
+
"model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
36 |
+
"model.layers.10.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
37 |
+
"model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
38 |
+
"model.layers.11.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
39 |
+
"model.layers.11.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
40 |
+
"model.layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
41 |
+
"model.layers.11.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
42 |
+
"model.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
43 |
+
"model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
44 |
+
"model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
45 |
+
"model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
46 |
+
"model.layers.11.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
47 |
+
"model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
48 |
+
"model.layers.12.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
49 |
+
"model.layers.12.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
50 |
+
"model.layers.12.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
51 |
+
"model.layers.12.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
52 |
+
"model.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
53 |
+
"model.layers.12.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
54 |
+
"model.layers.12.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
55 |
+
"model.layers.12.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
56 |
+
"model.layers.12.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
57 |
+
"model.layers.12.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
58 |
+
"model.layers.13.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
59 |
+
"model.layers.13.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
60 |
+
"model.layers.13.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
61 |
+
"model.layers.13.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
62 |
+
"model.layers.13.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
63 |
+
"model.layers.13.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
64 |
+
"model.layers.13.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
65 |
+
"model.layers.13.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
66 |
+
"model.layers.13.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
67 |
+
"model.layers.13.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
68 |
+
"model.layers.14.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
69 |
+
"model.layers.14.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
70 |
+
"model.layers.14.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
71 |
+
"model.layers.14.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
72 |
+
"model.layers.14.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
73 |
+
"model.layers.14.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
74 |
+
"model.layers.14.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
75 |
+
"model.layers.14.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
76 |
+
"model.layers.14.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
77 |
+
"model.layers.14.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
78 |
+
"model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
79 |
+
"model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
80 |
+
"model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
81 |
+
"model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
82 |
+
"model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
83 |
+
"model.layers.15.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
84 |
+
"model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
85 |
+
"model.layers.15.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
86 |
+
"model.layers.15.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
87 |
+
"model.layers.15.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
88 |
+
"model.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
89 |
+
"model.layers.16.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
90 |
+
"model.layers.16.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
91 |
+
"model.layers.16.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
92 |
+
"model.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
93 |
+
"model.layers.16.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
94 |
+
"model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
95 |
+
"model.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
96 |
+
"model.layers.16.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
97 |
+
"model.layers.16.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
98 |
+
"model.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
99 |
+
"model.layers.17.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
100 |
+
"model.layers.17.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
101 |
+
"model.layers.17.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
102 |
+
"model.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
103 |
+
"model.layers.17.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
104 |
+
"model.layers.17.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
105 |
+
"model.layers.17.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
106 |
+
"model.layers.17.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
107 |
+
"model.layers.17.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
108 |
+
"model.layers.18.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
109 |
+
"model.layers.18.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
110 |
+
"model.layers.18.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
111 |
+
"model.layers.18.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
112 |
+
"model.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
113 |
+
"model.layers.18.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
114 |
+
"model.layers.18.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
115 |
+
"model.layers.18.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
116 |
+
"model.layers.18.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
117 |
+
"model.layers.18.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
118 |
+
"model.layers.19.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
119 |
+
"model.layers.19.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
120 |
+
"model.layers.19.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
121 |
+
"model.layers.19.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
122 |
+
"model.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
123 |
+
"model.layers.19.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
124 |
+
"model.layers.19.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
125 |
+
"model.layers.19.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
126 |
+
"model.layers.19.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
127 |
+
"model.layers.19.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
128 |
+
"model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
129 |
+
"model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
130 |
+
"model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
131 |
+
"model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
132 |
+
"model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
133 |
+
"model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
134 |
+
"model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
135 |
+
"model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
136 |
+
"model.layers.2.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
137 |
+
"model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
138 |
+
"model.layers.20.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
139 |
+
"model.layers.20.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
140 |
+
"model.layers.20.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
141 |
+
"model.layers.20.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
142 |
+
"model.layers.20.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
143 |
+
"model.layers.20.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
144 |
+
"model.layers.20.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
145 |
+
"model.layers.20.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
146 |
+
"model.layers.20.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
147 |
+
"model.layers.20.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
148 |
+
"model.layers.21.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
149 |
+
"model.layers.21.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
150 |
+
"model.layers.21.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
151 |
+
"model.layers.21.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
152 |
+
"model.layers.21.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
153 |
+
"model.layers.21.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
154 |
+
"model.layers.21.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
155 |
+
"model.layers.21.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
156 |
+
"model.layers.21.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
157 |
+
"model.layers.21.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
158 |
+
"model.layers.22.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
159 |
+
"model.layers.22.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
160 |
+
"model.layers.22.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
161 |
+
"model.layers.22.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
162 |
+
"model.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
163 |
+
"model.layers.22.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
164 |
+
"model.layers.22.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
165 |
+
"model.layers.22.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
166 |
+
"model.layers.22.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
167 |
+
"model.layers.22.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
168 |
+
"model.layers.23.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
169 |
+
"model.layers.23.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
170 |
+
"model.layers.23.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
171 |
+
"model.layers.23.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
172 |
+
"model.layers.23.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
173 |
+
"model.layers.23.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
174 |
+
"model.layers.23.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
175 |
+
"model.layers.23.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
176 |
+
"model.layers.23.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
177 |
+
"model.layers.23.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
178 |
+
"model.layers.24.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
179 |
+
"model.layers.24.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
180 |
+
"model.layers.24.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
181 |
+
"model.layers.24.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
182 |
+
"model.layers.24.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
183 |
+
"model.layers.24.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
184 |
+
"model.layers.24.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
185 |
+
"model.layers.24.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
186 |
+
"model.layers.24.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
187 |
+
"model.layers.24.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
188 |
+
"model.layers.25.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
189 |
+
"model.layers.25.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
190 |
+
"model.layers.25.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
191 |
+
"model.layers.25.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
192 |
+
"model.layers.25.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
193 |
+
"model.layers.25.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
194 |
+
"model.layers.25.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
195 |
+
"model.layers.25.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
196 |
+
"model.layers.25.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
197 |
+
"model.layers.25.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
198 |
+
"model.layers.26.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
199 |
+
"model.layers.26.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
200 |
+
"model.layers.26.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
201 |
+
"model.layers.26.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
202 |
+
"model.layers.26.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
203 |
+
"model.layers.26.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
204 |
+
"model.layers.26.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
205 |
+
"model.layers.26.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
206 |
+
"model.layers.26.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
207 |
+
"model.layers.26.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
208 |
+
"model.layers.27.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
209 |
+
"model.layers.27.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
210 |
+
"model.layers.27.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
211 |
+
"model.layers.27.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
212 |
+
"model.layers.27.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
213 |
+
"model.layers.27.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
214 |
+
"model.layers.27.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
215 |
+
"model.layers.27.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
216 |
+
"model.layers.27.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
217 |
+
"model.layers.27.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
218 |
+
"model.layers.28.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
219 |
+
"model.layers.28.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
220 |
+
"model.layers.28.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
221 |
+
"model.layers.28.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
222 |
+
"model.layers.28.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
223 |
+
"model.layers.28.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
224 |
+
"model.layers.28.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
225 |
+
"model.layers.28.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
226 |
+
"model.layers.28.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
227 |
+
"model.layers.28.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
228 |
+
"model.layers.29.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
229 |
+
"model.layers.29.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
230 |
+
"model.layers.29.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
231 |
+
"model.layers.29.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
232 |
+
"model.layers.29.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
233 |
+
"model.layers.29.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
234 |
+
"model.layers.29.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
235 |
+
"model.layers.29.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
236 |
+
"model.layers.29.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
237 |
+
"model.layers.29.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
238 |
+
"model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
239 |
+
"model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
240 |
+
"model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
241 |
+
"model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
242 |
+
"model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
243 |
+
"model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
244 |
+
"model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
245 |
+
"model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
246 |
+
"model.layers.3.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
247 |
+
"model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
248 |
+
"model.layers.30.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
249 |
+
"model.layers.30.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
250 |
+
"model.layers.30.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
251 |
+
"model.layers.30.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
252 |
+
"model.layers.30.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
253 |
+
"model.layers.30.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
254 |
+
"model.layers.30.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
255 |
+
"model.layers.30.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
256 |
+
"model.layers.30.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
257 |
+
"model.layers.30.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
258 |
+
"model.layers.31.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
259 |
+
"model.layers.31.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
260 |
+
"model.layers.31.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
261 |
+
"model.layers.31.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
262 |
+
"model.layers.31.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
263 |
+
"model.layers.31.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
264 |
+
"model.layers.31.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
265 |
+
"model.layers.31.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
266 |
+
"model.layers.31.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
267 |
+
"model.layers.31.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
268 |
+
"model.layers.32.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
269 |
+
"model.layers.32.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
270 |
+
"model.layers.32.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
271 |
+
"model.layers.32.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
272 |
+
"model.layers.32.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
273 |
+
"model.layers.32.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
274 |
+
"model.layers.32.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
275 |
+
"model.layers.32.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
276 |
+
"model.layers.32.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
277 |
+
"model.layers.32.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
278 |
+
"model.layers.33.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
279 |
+
"model.layers.33.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
280 |
+
"model.layers.33.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
281 |
+
"model.layers.33.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
282 |
+
"model.layers.33.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
283 |
+
"model.layers.33.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
284 |
+
"model.layers.33.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
285 |
+
"model.layers.33.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
286 |
+
"model.layers.33.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
287 |
+
"model.layers.33.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
288 |
+
"model.layers.34.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
289 |
+
"model.layers.34.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
290 |
+
"model.layers.34.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
291 |
+
"model.layers.34.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
292 |
+
"model.layers.34.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
293 |
+
"model.layers.34.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
294 |
+
"model.layers.34.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
295 |
+
"model.layers.34.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
296 |
+
"model.layers.34.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
297 |
+
"model.layers.34.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
298 |
+
"model.layers.35.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
299 |
+
"model.layers.35.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
300 |
+
"model.layers.35.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
301 |
+
"model.layers.35.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
302 |
+
"model.layers.35.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
303 |
+
"model.layers.35.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
304 |
+
"model.layers.35.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
305 |
+
"model.layers.35.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
306 |
+
"model.layers.35.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
307 |
+
"model.layers.35.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
308 |
+
"model.layers.36.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
309 |
+
"model.layers.36.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
310 |
+
"model.layers.36.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
311 |
+
"model.layers.36.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
312 |
+
"model.layers.36.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
313 |
+
"model.layers.36.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
314 |
+
"model.layers.36.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
315 |
+
"model.layers.36.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
316 |
+
"model.layers.36.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
317 |
+
"model.layers.36.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
318 |
+
"model.layers.37.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
319 |
+
"model.layers.37.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
320 |
+
"model.layers.37.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
321 |
+
"model.layers.37.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
322 |
+
"model.layers.37.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
323 |
+
"model.layers.37.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
324 |
+
"model.layers.37.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
325 |
+
"model.layers.37.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
326 |
+
"model.layers.37.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
327 |
+
"model.layers.37.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
328 |
+
"model.layers.38.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
329 |
+
"model.layers.38.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
330 |
+
"model.layers.38.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
331 |
+
"model.layers.38.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
332 |
+
"model.layers.38.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
333 |
+
"model.layers.38.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
334 |
+
"model.layers.38.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
335 |
+
"model.layers.38.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
336 |
+
"model.layers.38.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
337 |
+
"model.layers.38.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
338 |
+
"model.layers.39.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
339 |
+
"model.layers.39.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
340 |
+
"model.layers.39.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
341 |
+
"model.layers.39.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
342 |
+
"model.layers.39.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
343 |
+
"model.layers.39.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
344 |
+
"model.layers.39.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
345 |
+
"model.layers.39.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
346 |
+
"model.layers.39.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
347 |
+
"model.layers.39.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
348 |
+
"model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
349 |
+
"model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
350 |
+
"model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
351 |
+
"model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
352 |
+
"model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
353 |
+
"model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
354 |
+
"model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
355 |
+
"model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
356 |
+
"model.layers.4.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
357 |
+
"model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
358 |
+
"model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
359 |
+
"model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
360 |
+
"model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
361 |
+
"model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
362 |
+
"model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
363 |
+
"model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
364 |
+
"model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
365 |
+
"model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
366 |
+
"model.layers.5.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
367 |
+
"model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
368 |
+
"model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
369 |
+
"model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
370 |
+
"model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
371 |
+
"model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
372 |
+
"model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
373 |
+
"model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
374 |
+
"model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
375 |
+
"model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
376 |
+
"model.layers.6.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
377 |
+
"model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
378 |
+
"model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
379 |
+
"model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
380 |
+
"model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
381 |
+
"model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
382 |
+
"model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
383 |
+
"model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
384 |
+
"model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
385 |
+
"model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
386 |
+
"model.layers.7.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
387 |
+
"model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
388 |
+
"model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
389 |
+
"model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
390 |
+
"model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
391 |
+
"model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
392 |
+
"model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
393 |
+
"model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
394 |
+
"model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
395 |
+
"model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
396 |
+
"model.layers.8.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
397 |
+
"model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
398 |
+
"model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
399 |
+
"model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
400 |
+
"model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
401 |
+
"model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
402 |
+
"model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
403 |
+
"model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
404 |
+
"model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
405 |
+
"model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
406 |
+
"model.layers.9.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
407 |
+
"model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
408 |
+
"model.norm.weight": "pytorch_model-00003-of-00003.bin"
|
409 |
+
}
|
410 |
+
}
|
rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c5775c11ec2fe6a5d58d1857fa436bb0da77027386858b2a4e7ea3eff9c2ab66
|
3 |
+
size 17655
|
rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ca1a0e79990b2325280b0f88b8b2e25a4c5d61927bfa5e5c178ffe1321125ca9
|
3 |
+
size 17655
|
rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0aebaa297ea8d8fd38ae9b49e17f26565783e27c56a220dc278f70f6593bccda
|
3 |
+
size 17655
|
rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4f537c78a9ca12294baa835f33188b772f2cbf238559c0f36ab3505e19304755
|
3 |
+
size 17655
|
special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "<unk>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": true,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
3 |
+
size 499723
|
tokenizer_config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"bos_token": {
|
5 |
+
"__type": "AddedToken",
|
6 |
+
"content": "<s>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": true,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"clean_up_tokenization_spaces": false,
|
13 |
+
"eos_token": {
|
14 |
+
"__type": "AddedToken",
|
15 |
+
"content": "</s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": true,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false
|
20 |
+
},
|
21 |
+
"legacy": false,
|
22 |
+
"model_max_length": 4096,
|
23 |
+
"pad_token": null,
|
24 |
+
"padding_side": "right",
|
25 |
+
"sp_model_kwargs": {},
|
26 |
+
"tokenizer_class": "LlamaTokenizer",
|
27 |
+
"unk_token": {
|
28 |
+
"__type": "AddedToken",
|
29 |
+
"content": "<unk>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": true,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false
|
34 |
+
}
|
35 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,3598 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 2.992481203007519,
|
5 |
+
"global_step": 597,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.01,
|
12 |
+
"learning_rate": 0.0,
|
13 |
+
"loss": 1.6269,
|
14 |
+
"step": 1
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 0.01,
|
18 |
+
"learning_rate": 4.362085839710631e-06,
|
19 |
+
"loss": 1.3291,
|
20 |
+
"step": 2
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 0.02,
|
24 |
+
"learning_rate": 6.9137424808681075e-06,
|
25 |
+
"loss": 1.288,
|
26 |
+
"step": 3
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 0.02,
|
30 |
+
"learning_rate": 8.724171679421262e-06,
|
31 |
+
"loss": 1.2228,
|
32 |
+
"step": 4
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 0.03,
|
36 |
+
"learning_rate": 1.0128449663534445e-05,
|
37 |
+
"loss": 1.1311,
|
38 |
+
"step": 5
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.03,
|
42 |
+
"learning_rate": 1.1275828320578736e-05,
|
43 |
+
"loss": 1.1302,
|
44 |
+
"step": 6
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.04,
|
48 |
+
"learning_rate": 1.2245923152549418e-05,
|
49 |
+
"loss": 1.1106,
|
50 |
+
"step": 7
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 0.04,
|
54 |
+
"learning_rate": 1.3086257519131893e-05,
|
55 |
+
"loss": 1.0906,
|
56 |
+
"step": 8
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 0.05,
|
60 |
+
"learning_rate": 1.3827484961736215e-05,
|
61 |
+
"loss": 1.0762,
|
62 |
+
"step": 9
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 0.05,
|
66 |
+
"learning_rate": 1.449053550324508e-05,
|
67 |
+
"loss": 1.1165,
|
68 |
+
"step": 10
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"epoch": 0.06,
|
72 |
+
"learning_rate": 1.5090337677104985e-05,
|
73 |
+
"loss": 1.0933,
|
74 |
+
"step": 11
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"epoch": 0.06,
|
78 |
+
"learning_rate": 1.563791416028937e-05,
|
79 |
+
"loss": 1.0669,
|
80 |
+
"step": 12
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.07,
|
84 |
+
"learning_rate": 1.6141635695206056e-05,
|
85 |
+
"loss": 1.0529,
|
86 |
+
"step": 13
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.07,
|
90 |
+
"learning_rate": 1.660800899226005e-05,
|
91 |
+
"loss": 1.0585,
|
92 |
+
"step": 14
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"epoch": 0.08,
|
96 |
+
"learning_rate": 1.7042192144402555e-05,
|
97 |
+
"loss": 1.0577,
|
98 |
+
"step": 15
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 0.08,
|
102 |
+
"learning_rate": 1.7448343358842524e-05,
|
103 |
+
"loss": 1.0163,
|
104 |
+
"step": 16
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"epoch": 0.09,
|
108 |
+
"learning_rate": 1.782986378016149e-05,
|
109 |
+
"loss": 1.0157,
|
110 |
+
"step": 17
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"epoch": 0.09,
|
114 |
+
"learning_rate": 1.8189570801446844e-05,
|
115 |
+
"loss": 1.0188,
|
116 |
+
"step": 18
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 0.1,
|
120 |
+
"learning_rate": 1.8529824454509456e-05,
|
121 |
+
"loss": 1.011,
|
122 |
+
"step": 19
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.1,
|
126 |
+
"learning_rate": 1.885262134295571e-05,
|
127 |
+
"loss": 0.9944,
|
128 |
+
"step": 20
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.11,
|
132 |
+
"learning_rate": 1.9159665633417526e-05,
|
133 |
+
"loss": 1.0111,
|
134 |
+
"step": 21
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"epoch": 0.11,
|
138 |
+
"learning_rate": 1.9452423516815614e-05,
|
139 |
+
"loss": 1.0075,
|
140 |
+
"step": 22
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"epoch": 0.12,
|
144 |
+
"learning_rate": 1.9732165553570022e-05,
|
145 |
+
"loss": 0.977,
|
146 |
+
"step": 23
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"epoch": 0.12,
|
150 |
+
"learning_rate": 2e-05,
|
151 |
+
"loss": 0.9518,
|
152 |
+
"step": 24
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"epoch": 0.13,
|
156 |
+
"learning_rate": 2e-05,
|
157 |
+
"loss": 1.0217,
|
158 |
+
"step": 25
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 0.13,
|
162 |
+
"learning_rate": 1.9965095986038395e-05,
|
163 |
+
"loss": 0.9755,
|
164 |
+
"step": 26
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.14,
|
168 |
+
"learning_rate": 1.9930191972076792e-05,
|
169 |
+
"loss": 0.9597,
|
170 |
+
"step": 27
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.14,
|
174 |
+
"learning_rate": 1.9895287958115186e-05,
|
175 |
+
"loss": 0.9954,
|
176 |
+
"step": 28
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"epoch": 0.15,
|
180 |
+
"learning_rate": 1.986038394415358e-05,
|
181 |
+
"loss": 0.9797,
|
182 |
+
"step": 29
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 0.15,
|
186 |
+
"learning_rate": 1.9825479930191973e-05,
|
187 |
+
"loss": 0.9659,
|
188 |
+
"step": 30
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"epoch": 0.16,
|
192 |
+
"learning_rate": 1.9790575916230367e-05,
|
193 |
+
"loss": 0.9604,
|
194 |
+
"step": 31
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"epoch": 0.16,
|
198 |
+
"learning_rate": 1.9755671902268764e-05,
|
199 |
+
"loss": 0.9531,
|
200 |
+
"step": 32
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 0.17,
|
204 |
+
"learning_rate": 1.9720767888307158e-05,
|
205 |
+
"loss": 0.9474,
|
206 |
+
"step": 33
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.17,
|
210 |
+
"learning_rate": 1.968586387434555e-05,
|
211 |
+
"loss": 0.9707,
|
212 |
+
"step": 34
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.18,
|
216 |
+
"learning_rate": 1.9650959860383945e-05,
|
217 |
+
"loss": 0.9531,
|
218 |
+
"step": 35
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"epoch": 0.18,
|
222 |
+
"learning_rate": 1.961605584642234e-05,
|
223 |
+
"loss": 0.9464,
|
224 |
+
"step": 36
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"epoch": 0.19,
|
228 |
+
"learning_rate": 1.9581151832460736e-05,
|
229 |
+
"loss": 0.9683,
|
230 |
+
"step": 37
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"epoch": 0.19,
|
234 |
+
"learning_rate": 1.954624781849913e-05,
|
235 |
+
"loss": 0.9791,
|
236 |
+
"step": 38
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 0.2,
|
240 |
+
"learning_rate": 1.9511343804537523e-05,
|
241 |
+
"loss": 0.9639,
|
242 |
+
"step": 39
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"epoch": 0.2,
|
246 |
+
"learning_rate": 1.947643979057592e-05,
|
247 |
+
"loss": 0.9698,
|
248 |
+
"step": 40
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.21,
|
252 |
+
"learning_rate": 1.9441535776614313e-05,
|
253 |
+
"loss": 0.9494,
|
254 |
+
"step": 41
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.21,
|
258 |
+
"learning_rate": 1.9406631762652707e-05,
|
259 |
+
"loss": 0.9133,
|
260 |
+
"step": 42
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"epoch": 0.22,
|
264 |
+
"learning_rate": 1.93717277486911e-05,
|
265 |
+
"loss": 0.957,
|
266 |
+
"step": 43
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"epoch": 0.22,
|
270 |
+
"learning_rate": 1.9336823734729494e-05,
|
271 |
+
"loss": 0.9716,
|
272 |
+
"step": 44
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"epoch": 0.23,
|
276 |
+
"learning_rate": 1.930191972076789e-05,
|
277 |
+
"loss": 0.9417,
|
278 |
+
"step": 45
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"epoch": 0.23,
|
282 |
+
"learning_rate": 1.9267015706806285e-05,
|
283 |
+
"loss": 0.9314,
|
284 |
+
"step": 46
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"epoch": 0.24,
|
288 |
+
"learning_rate": 1.923211169284468e-05,
|
289 |
+
"loss": 0.9466,
|
290 |
+
"step": 47
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 0.24,
|
294 |
+
"learning_rate": 1.9197207678883076e-05,
|
295 |
+
"loss": 0.9356,
|
296 |
+
"step": 48
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.25,
|
300 |
+
"learning_rate": 1.9162303664921466e-05,
|
301 |
+
"loss": 0.9515,
|
302 |
+
"step": 49
|
303 |
+
},
|
304 |
+
{
|
305 |
+
"epoch": 0.25,
|
306 |
+
"learning_rate": 1.9127399650959863e-05,
|
307 |
+
"loss": 0.9493,
|
308 |
+
"step": 50
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"epoch": 0.26,
|
312 |
+
"learning_rate": 1.9092495636998257e-05,
|
313 |
+
"loss": 0.9238,
|
314 |
+
"step": 51
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"epoch": 0.26,
|
318 |
+
"learning_rate": 1.905759162303665e-05,
|
319 |
+
"loss": 0.8964,
|
320 |
+
"step": 52
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"epoch": 0.27,
|
324 |
+
"learning_rate": 1.9022687609075044e-05,
|
325 |
+
"loss": 0.9171,
|
326 |
+
"step": 53
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"epoch": 0.27,
|
330 |
+
"learning_rate": 1.898778359511344e-05,
|
331 |
+
"loss": 0.9376,
|
332 |
+
"step": 54
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"epoch": 0.28,
|
336 |
+
"learning_rate": 1.895287958115183e-05,
|
337 |
+
"loss": 0.9099,
|
338 |
+
"step": 55
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.28,
|
342 |
+
"learning_rate": 1.891797556719023e-05,
|
343 |
+
"loss": 0.9079,
|
344 |
+
"step": 56
|
345 |
+
},
|
346 |
+
{
|
347 |
+
"epoch": 0.29,
|
348 |
+
"learning_rate": 1.8883071553228622e-05,
|
349 |
+
"loss": 0.9179,
|
350 |
+
"step": 57
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"epoch": 0.29,
|
354 |
+
"learning_rate": 1.8848167539267016e-05,
|
355 |
+
"loss": 0.927,
|
356 |
+
"step": 58
|
357 |
+
},
|
358 |
+
{
|
359 |
+
"epoch": 0.3,
|
360 |
+
"learning_rate": 1.8813263525305413e-05,
|
361 |
+
"loss": 0.9034,
|
362 |
+
"step": 59
|
363 |
+
},
|
364 |
+
{
|
365 |
+
"epoch": 0.3,
|
366 |
+
"learning_rate": 1.8778359511343806e-05,
|
367 |
+
"loss": 0.9394,
|
368 |
+
"step": 60
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"epoch": 0.31,
|
372 |
+
"learning_rate": 1.87434554973822e-05,
|
373 |
+
"loss": 0.9212,
|
374 |
+
"step": 61
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 0.31,
|
378 |
+
"learning_rate": 1.8708551483420594e-05,
|
379 |
+
"loss": 0.9245,
|
380 |
+
"step": 62
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.32,
|
384 |
+
"learning_rate": 1.8673647469458987e-05,
|
385 |
+
"loss": 0.9168,
|
386 |
+
"step": 63
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"epoch": 0.32,
|
390 |
+
"learning_rate": 1.8638743455497384e-05,
|
391 |
+
"loss": 0.9483,
|
392 |
+
"step": 64
|
393 |
+
},
|
394 |
+
{
|
395 |
+
"epoch": 0.33,
|
396 |
+
"learning_rate": 1.8603839441535778e-05,
|
397 |
+
"loss": 0.9529,
|
398 |
+
"step": 65
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"epoch": 0.33,
|
402 |
+
"learning_rate": 1.856893542757417e-05,
|
403 |
+
"loss": 0.9324,
|
404 |
+
"step": 66
|
405 |
+
},
|
406 |
+
{
|
407 |
+
"epoch": 0.34,
|
408 |
+
"learning_rate": 1.853403141361257e-05,
|
409 |
+
"loss": 0.9584,
|
410 |
+
"step": 67
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"epoch": 0.34,
|
414 |
+
"learning_rate": 1.8499127399650962e-05,
|
415 |
+
"loss": 0.9238,
|
416 |
+
"step": 68
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 0.35,
|
420 |
+
"learning_rate": 1.8464223385689356e-05,
|
421 |
+
"loss": 0.9264,
|
422 |
+
"step": 69
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.35,
|
426 |
+
"learning_rate": 1.842931937172775e-05,
|
427 |
+
"loss": 0.9102,
|
428 |
+
"step": 70
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"epoch": 0.36,
|
432 |
+
"learning_rate": 1.8394415357766143e-05,
|
433 |
+
"loss": 0.9337,
|
434 |
+
"step": 71
|
435 |
+
},
|
436 |
+
{
|
437 |
+
"epoch": 0.36,
|
438 |
+
"learning_rate": 1.835951134380454e-05,
|
439 |
+
"loss": 0.9241,
|
440 |
+
"step": 72
|
441 |
+
},
|
442 |
+
{
|
443 |
+
"epoch": 0.37,
|
444 |
+
"learning_rate": 1.8324607329842934e-05,
|
445 |
+
"loss": 0.9169,
|
446 |
+
"step": 73
|
447 |
+
},
|
448 |
+
{
|
449 |
+
"epoch": 0.37,
|
450 |
+
"learning_rate": 1.8289703315881327e-05,
|
451 |
+
"loss": 0.9277,
|
452 |
+
"step": 74
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"epoch": 0.38,
|
456 |
+
"learning_rate": 1.825479930191972e-05,
|
457 |
+
"loss": 0.9354,
|
458 |
+
"step": 75
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 0.38,
|
462 |
+
"learning_rate": 1.8219895287958115e-05,
|
463 |
+
"loss": 0.908,
|
464 |
+
"step": 76
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.39,
|
468 |
+
"learning_rate": 1.8184991273996512e-05,
|
469 |
+
"loss": 0.9055,
|
470 |
+
"step": 77
|
471 |
+
},
|
472 |
+
{
|
473 |
+
"epoch": 0.39,
|
474 |
+
"learning_rate": 1.8150087260034905e-05,
|
475 |
+
"loss": 0.9371,
|
476 |
+
"step": 78
|
477 |
+
},
|
478 |
+
{
|
479 |
+
"epoch": 0.4,
|
480 |
+
"learning_rate": 1.81151832460733e-05,
|
481 |
+
"loss": 0.9266,
|
482 |
+
"step": 79
|
483 |
+
},
|
484 |
+
{
|
485 |
+
"epoch": 0.4,
|
486 |
+
"learning_rate": 1.8080279232111696e-05,
|
487 |
+
"loss": 0.917,
|
488 |
+
"step": 80
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"epoch": 0.41,
|
492 |
+
"learning_rate": 1.804537521815009e-05,
|
493 |
+
"loss": 0.9042,
|
494 |
+
"step": 81
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"epoch": 0.41,
|
498 |
+
"learning_rate": 1.8010471204188483e-05,
|
499 |
+
"loss": 0.9092,
|
500 |
+
"step": 82
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"epoch": 0.42,
|
504 |
+
"learning_rate": 1.7975567190226877e-05,
|
505 |
+
"loss": 0.9096,
|
506 |
+
"step": 83
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.42,
|
510 |
+
"learning_rate": 1.794066317626527e-05,
|
511 |
+
"loss": 0.9432,
|
512 |
+
"step": 84
|
513 |
+
},
|
514 |
+
{
|
515 |
+
"epoch": 0.43,
|
516 |
+
"learning_rate": 1.7905759162303668e-05,
|
517 |
+
"loss": 0.8991,
|
518 |
+
"step": 85
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"epoch": 0.43,
|
522 |
+
"learning_rate": 1.787085514834206e-05,
|
523 |
+
"loss": 0.9307,
|
524 |
+
"step": 86
|
525 |
+
},
|
526 |
+
{
|
527 |
+
"epoch": 0.44,
|
528 |
+
"learning_rate": 1.7835951134380455e-05,
|
529 |
+
"loss": 0.906,
|
530 |
+
"step": 87
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"epoch": 0.44,
|
534 |
+
"learning_rate": 1.7801047120418852e-05,
|
535 |
+
"loss": 0.8982,
|
536 |
+
"step": 88
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"epoch": 0.45,
|
540 |
+
"learning_rate": 1.7766143106457242e-05,
|
541 |
+
"loss": 0.9108,
|
542 |
+
"step": 89
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 0.45,
|
546 |
+
"learning_rate": 1.773123909249564e-05,
|
547 |
+
"loss": 0.9366,
|
548 |
+
"step": 90
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.46,
|
552 |
+
"learning_rate": 1.7696335078534033e-05,
|
553 |
+
"loss": 0.9144,
|
554 |
+
"step": 91
|
555 |
+
},
|
556 |
+
{
|
557 |
+
"epoch": 0.46,
|
558 |
+
"learning_rate": 1.7661431064572427e-05,
|
559 |
+
"loss": 0.9078,
|
560 |
+
"step": 92
|
561 |
+
},
|
562 |
+
{
|
563 |
+
"epoch": 0.47,
|
564 |
+
"learning_rate": 1.7626527050610824e-05,
|
565 |
+
"loss": 0.9023,
|
566 |
+
"step": 93
|
567 |
+
},
|
568 |
+
{
|
569 |
+
"epoch": 0.47,
|
570 |
+
"learning_rate": 1.7591623036649217e-05,
|
571 |
+
"loss": 0.8962,
|
572 |
+
"step": 94
|
573 |
+
},
|
574 |
+
{
|
575 |
+
"epoch": 0.48,
|
576 |
+
"learning_rate": 1.755671902268761e-05,
|
577 |
+
"loss": 0.8982,
|
578 |
+
"step": 95
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"epoch": 0.48,
|
582 |
+
"learning_rate": 1.7521815008726005e-05,
|
583 |
+
"loss": 0.8806,
|
584 |
+
"step": 96
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 0.49,
|
588 |
+
"learning_rate": 1.7486910994764398e-05,
|
589 |
+
"loss": 0.9171,
|
590 |
+
"step": 97
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.49,
|
594 |
+
"learning_rate": 1.7452006980802795e-05,
|
595 |
+
"loss": 0.909,
|
596 |
+
"step": 98
|
597 |
+
},
|
598 |
+
{
|
599 |
+
"epoch": 0.5,
|
600 |
+
"learning_rate": 1.741710296684119e-05,
|
601 |
+
"loss": 0.9284,
|
602 |
+
"step": 99
|
603 |
+
},
|
604 |
+
{
|
605 |
+
"epoch": 0.5,
|
606 |
+
"learning_rate": 1.7382198952879583e-05,
|
607 |
+
"loss": 0.8931,
|
608 |
+
"step": 100
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"epoch": 0.51,
|
612 |
+
"learning_rate": 1.734729493891798e-05,
|
613 |
+
"loss": 0.9087,
|
614 |
+
"step": 101
|
615 |
+
},
|
616 |
+
{
|
617 |
+
"epoch": 0.51,
|
618 |
+
"learning_rate": 1.731239092495637e-05,
|
619 |
+
"loss": 0.9029,
|
620 |
+
"step": 102
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"epoch": 0.52,
|
624 |
+
"learning_rate": 1.7277486910994767e-05,
|
625 |
+
"loss": 0.8965,
|
626 |
+
"step": 103
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 0.52,
|
630 |
+
"learning_rate": 1.724258289703316e-05,
|
631 |
+
"loss": 0.9018,
|
632 |
+
"step": 104
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.53,
|
636 |
+
"learning_rate": 1.7207678883071554e-05,
|
637 |
+
"loss": 0.9086,
|
638 |
+
"step": 105
|
639 |
+
},
|
640 |
+
{
|
641 |
+
"epoch": 0.53,
|
642 |
+
"learning_rate": 1.7172774869109948e-05,
|
643 |
+
"loss": 0.9094,
|
644 |
+
"step": 106
|
645 |
+
},
|
646 |
+
{
|
647 |
+
"epoch": 0.54,
|
648 |
+
"learning_rate": 1.7137870855148345e-05,
|
649 |
+
"loss": 0.9108,
|
650 |
+
"step": 107
|
651 |
+
},
|
652 |
+
{
|
653 |
+
"epoch": 0.54,
|
654 |
+
"learning_rate": 1.710296684118674e-05,
|
655 |
+
"loss": 0.9219,
|
656 |
+
"step": 108
|
657 |
+
},
|
658 |
+
{
|
659 |
+
"epoch": 0.55,
|
660 |
+
"learning_rate": 1.7068062827225132e-05,
|
661 |
+
"loss": 0.8886,
|
662 |
+
"step": 109
|
663 |
+
},
|
664 |
+
{
|
665 |
+
"epoch": 0.55,
|
666 |
+
"learning_rate": 1.7033158813263526e-05,
|
667 |
+
"loss": 0.8884,
|
668 |
+
"step": 110
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"epoch": 0.56,
|
672 |
+
"learning_rate": 1.699825479930192e-05,
|
673 |
+
"loss": 0.8941,
|
674 |
+
"step": 111
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.56,
|
678 |
+
"learning_rate": 1.6963350785340316e-05,
|
679 |
+
"loss": 0.9083,
|
680 |
+
"step": 112
|
681 |
+
},
|
682 |
+
{
|
683 |
+
"epoch": 0.57,
|
684 |
+
"learning_rate": 1.692844677137871e-05,
|
685 |
+
"loss": 0.8894,
|
686 |
+
"step": 113
|
687 |
+
},
|
688 |
+
{
|
689 |
+
"epoch": 0.57,
|
690 |
+
"learning_rate": 1.6893542757417104e-05,
|
691 |
+
"loss": 0.9183,
|
692 |
+
"step": 114
|
693 |
+
},
|
694 |
+
{
|
695 |
+
"epoch": 0.58,
|
696 |
+
"learning_rate": 1.6858638743455497e-05,
|
697 |
+
"loss": 0.9147,
|
698 |
+
"step": 115
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"epoch": 0.58,
|
702 |
+
"learning_rate": 1.682373472949389e-05,
|
703 |
+
"loss": 0.9384,
|
704 |
+
"step": 116
|
705 |
+
},
|
706 |
+
{
|
707 |
+
"epoch": 0.59,
|
708 |
+
"learning_rate": 1.6788830715532288e-05,
|
709 |
+
"loss": 0.8927,
|
710 |
+
"step": 117
|
711 |
+
},
|
712 |
+
{
|
713 |
+
"epoch": 0.59,
|
714 |
+
"learning_rate": 1.675392670157068e-05,
|
715 |
+
"loss": 0.8963,
|
716 |
+
"step": 118
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.6,
|
720 |
+
"learning_rate": 1.6719022687609075e-05,
|
721 |
+
"loss": 0.8825,
|
722 |
+
"step": 119
|
723 |
+
},
|
724 |
+
{
|
725 |
+
"epoch": 0.6,
|
726 |
+
"learning_rate": 1.6684118673647472e-05,
|
727 |
+
"loss": 0.9027,
|
728 |
+
"step": 120
|
729 |
+
},
|
730 |
+
{
|
731 |
+
"epoch": 0.61,
|
732 |
+
"learning_rate": 1.6649214659685866e-05,
|
733 |
+
"loss": 0.8963,
|
734 |
+
"step": 121
|
735 |
+
},
|
736 |
+
{
|
737 |
+
"epoch": 0.61,
|
738 |
+
"learning_rate": 1.661431064572426e-05,
|
739 |
+
"loss": 0.9076,
|
740 |
+
"step": 122
|
741 |
+
},
|
742 |
+
{
|
743 |
+
"epoch": 0.62,
|
744 |
+
"learning_rate": 1.6579406631762653e-05,
|
745 |
+
"loss": 0.8914,
|
746 |
+
"step": 123
|
747 |
+
},
|
748 |
+
{
|
749 |
+
"epoch": 0.62,
|
750 |
+
"learning_rate": 1.6544502617801047e-05,
|
751 |
+
"loss": 0.8643,
|
752 |
+
"step": 124
|
753 |
+
},
|
754 |
+
{
|
755 |
+
"epoch": 0.63,
|
756 |
+
"learning_rate": 1.6509598603839444e-05,
|
757 |
+
"loss": 0.8928,
|
758 |
+
"step": 125
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 0.63,
|
762 |
+
"learning_rate": 1.6474694589877838e-05,
|
763 |
+
"loss": 0.8884,
|
764 |
+
"step": 126
|
765 |
+
},
|
766 |
+
{
|
767 |
+
"epoch": 0.64,
|
768 |
+
"learning_rate": 1.643979057591623e-05,
|
769 |
+
"loss": 0.8869,
|
770 |
+
"step": 127
|
771 |
+
},
|
772 |
+
{
|
773 |
+
"epoch": 0.64,
|
774 |
+
"learning_rate": 1.6404886561954628e-05,
|
775 |
+
"loss": 0.8969,
|
776 |
+
"step": 128
|
777 |
+
},
|
778 |
+
{
|
779 |
+
"epoch": 0.65,
|
780 |
+
"learning_rate": 1.636998254799302e-05,
|
781 |
+
"loss": 0.8697,
|
782 |
+
"step": 129
|
783 |
+
},
|
784 |
+
{
|
785 |
+
"epoch": 0.65,
|
786 |
+
"learning_rate": 1.6335078534031416e-05,
|
787 |
+
"loss": 0.9247,
|
788 |
+
"step": 130
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"epoch": 0.66,
|
792 |
+
"learning_rate": 1.630017452006981e-05,
|
793 |
+
"loss": 0.8845,
|
794 |
+
"step": 131
|
795 |
+
},
|
796 |
+
{
|
797 |
+
"epoch": 0.66,
|
798 |
+
"learning_rate": 1.6265270506108203e-05,
|
799 |
+
"loss": 0.9019,
|
800 |
+
"step": 132
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 0.67,
|
804 |
+
"learning_rate": 1.62303664921466e-05,
|
805 |
+
"loss": 0.8775,
|
806 |
+
"step": 133
|
807 |
+
},
|
808 |
+
{
|
809 |
+
"epoch": 0.67,
|
810 |
+
"learning_rate": 1.6195462478184994e-05,
|
811 |
+
"loss": 0.8651,
|
812 |
+
"step": 134
|
813 |
+
},
|
814 |
+
{
|
815 |
+
"epoch": 0.68,
|
816 |
+
"learning_rate": 1.6160558464223387e-05,
|
817 |
+
"loss": 0.9006,
|
818 |
+
"step": 135
|
819 |
+
},
|
820 |
+
{
|
821 |
+
"epoch": 0.68,
|
822 |
+
"learning_rate": 1.612565445026178e-05,
|
823 |
+
"loss": 0.8892,
|
824 |
+
"step": 136
|
825 |
+
},
|
826 |
+
{
|
827 |
+
"epoch": 0.69,
|
828 |
+
"learning_rate": 1.6090750436300174e-05,
|
829 |
+
"loss": 0.8842,
|
830 |
+
"step": 137
|
831 |
+
},
|
832 |
+
{
|
833 |
+
"epoch": 0.69,
|
834 |
+
"learning_rate": 1.605584642233857e-05,
|
835 |
+
"loss": 0.8817,
|
836 |
+
"step": 138
|
837 |
+
},
|
838 |
+
{
|
839 |
+
"epoch": 0.7,
|
840 |
+
"learning_rate": 1.6020942408376965e-05,
|
841 |
+
"loss": 0.9012,
|
842 |
+
"step": 139
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 0.7,
|
846 |
+
"learning_rate": 1.598603839441536e-05,
|
847 |
+
"loss": 0.8772,
|
848 |
+
"step": 140
|
849 |
+
},
|
850 |
+
{
|
851 |
+
"epoch": 0.71,
|
852 |
+
"learning_rate": 1.5951134380453756e-05,
|
853 |
+
"loss": 0.8845,
|
854 |
+
"step": 141
|
855 |
+
},
|
856 |
+
{
|
857 |
+
"epoch": 0.71,
|
858 |
+
"learning_rate": 1.5916230366492146e-05,
|
859 |
+
"loss": 0.9037,
|
860 |
+
"step": 142
|
861 |
+
},
|
862 |
+
{
|
863 |
+
"epoch": 0.72,
|
864 |
+
"learning_rate": 1.5881326352530543e-05,
|
865 |
+
"loss": 0.8907,
|
866 |
+
"step": 143
|
867 |
+
},
|
868 |
+
{
|
869 |
+
"epoch": 0.72,
|
870 |
+
"learning_rate": 1.5846422338568937e-05,
|
871 |
+
"loss": 0.8891,
|
872 |
+
"step": 144
|
873 |
+
},
|
874 |
+
{
|
875 |
+
"epoch": 0.73,
|
876 |
+
"learning_rate": 1.581151832460733e-05,
|
877 |
+
"loss": 0.8905,
|
878 |
+
"step": 145
|
879 |
+
},
|
880 |
+
{
|
881 |
+
"epoch": 0.73,
|
882 |
+
"learning_rate": 1.5776614310645727e-05,
|
883 |
+
"loss": 0.8923,
|
884 |
+
"step": 146
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 0.74,
|
888 |
+
"learning_rate": 1.574171029668412e-05,
|
889 |
+
"loss": 0.9181,
|
890 |
+
"step": 147
|
891 |
+
},
|
892 |
+
{
|
893 |
+
"epoch": 0.74,
|
894 |
+
"learning_rate": 1.5706806282722515e-05,
|
895 |
+
"loss": 0.8782,
|
896 |
+
"step": 148
|
897 |
+
},
|
898 |
+
{
|
899 |
+
"epoch": 0.75,
|
900 |
+
"learning_rate": 1.567190226876091e-05,
|
901 |
+
"loss": 0.8783,
|
902 |
+
"step": 149
|
903 |
+
},
|
904 |
+
{
|
905 |
+
"epoch": 0.75,
|
906 |
+
"learning_rate": 1.5636998254799302e-05,
|
907 |
+
"loss": 0.8941,
|
908 |
+
"step": 150
|
909 |
+
},
|
910 |
+
{
|
911 |
+
"epoch": 0.76,
|
912 |
+
"learning_rate": 1.56020942408377e-05,
|
913 |
+
"loss": 0.9005,
|
914 |
+
"step": 151
|
915 |
+
},
|
916 |
+
{
|
917 |
+
"epoch": 0.76,
|
918 |
+
"learning_rate": 1.5567190226876093e-05,
|
919 |
+
"loss": 0.8856,
|
920 |
+
"step": 152
|
921 |
+
},
|
922 |
+
{
|
923 |
+
"epoch": 0.77,
|
924 |
+
"learning_rate": 1.5532286212914486e-05,
|
925 |
+
"loss": 0.9212,
|
926 |
+
"step": 153
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 0.77,
|
930 |
+
"learning_rate": 1.5497382198952883e-05,
|
931 |
+
"loss": 0.8792,
|
932 |
+
"step": 154
|
933 |
+
},
|
934 |
+
{
|
935 |
+
"epoch": 0.78,
|
936 |
+
"learning_rate": 1.5462478184991274e-05,
|
937 |
+
"loss": 0.8824,
|
938 |
+
"step": 155
|
939 |
+
},
|
940 |
+
{
|
941 |
+
"epoch": 0.78,
|
942 |
+
"learning_rate": 1.5427574171029667e-05,
|
943 |
+
"loss": 0.8836,
|
944 |
+
"step": 156
|
945 |
+
},
|
946 |
+
{
|
947 |
+
"epoch": 0.79,
|
948 |
+
"learning_rate": 1.5392670157068064e-05,
|
949 |
+
"loss": 0.8796,
|
950 |
+
"step": 157
|
951 |
+
},
|
952 |
+
{
|
953 |
+
"epoch": 0.79,
|
954 |
+
"learning_rate": 1.5357766143106458e-05,
|
955 |
+
"loss": 0.8618,
|
956 |
+
"step": 158
|
957 |
+
},
|
958 |
+
{
|
959 |
+
"epoch": 0.8,
|
960 |
+
"learning_rate": 1.532286212914485e-05,
|
961 |
+
"loss": 0.9057,
|
962 |
+
"step": 159
|
963 |
+
},
|
964 |
+
{
|
965 |
+
"epoch": 0.8,
|
966 |
+
"learning_rate": 1.528795811518325e-05,
|
967 |
+
"loss": 0.9108,
|
968 |
+
"step": 160
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 0.81,
|
972 |
+
"learning_rate": 1.5253054101221642e-05,
|
973 |
+
"loss": 0.8861,
|
974 |
+
"step": 161
|
975 |
+
},
|
976 |
+
{
|
977 |
+
"epoch": 0.81,
|
978 |
+
"learning_rate": 1.5218150087260036e-05,
|
979 |
+
"loss": 0.8619,
|
980 |
+
"step": 162
|
981 |
+
},
|
982 |
+
{
|
983 |
+
"epoch": 0.82,
|
984 |
+
"learning_rate": 1.518324607329843e-05,
|
985 |
+
"loss": 0.8902,
|
986 |
+
"step": 163
|
987 |
+
},
|
988 |
+
{
|
989 |
+
"epoch": 0.82,
|
990 |
+
"learning_rate": 1.5148342059336825e-05,
|
991 |
+
"loss": 0.8787,
|
992 |
+
"step": 164
|
993 |
+
},
|
994 |
+
{
|
995 |
+
"epoch": 0.83,
|
996 |
+
"learning_rate": 1.511343804537522e-05,
|
997 |
+
"loss": 0.881,
|
998 |
+
"step": 165
|
999 |
+
},
|
1000 |
+
{
|
1001 |
+
"epoch": 0.83,
|
1002 |
+
"learning_rate": 1.5078534031413614e-05,
|
1003 |
+
"loss": 0.8711,
|
1004 |
+
"step": 166
|
1005 |
+
},
|
1006 |
+
{
|
1007 |
+
"epoch": 0.84,
|
1008 |
+
"learning_rate": 1.504363001745201e-05,
|
1009 |
+
"loss": 0.8762,
|
1010 |
+
"step": 167
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 0.84,
|
1014 |
+
"learning_rate": 1.5008726003490403e-05,
|
1015 |
+
"loss": 0.8819,
|
1016 |
+
"step": 168
|
1017 |
+
},
|
1018 |
+
{
|
1019 |
+
"epoch": 0.85,
|
1020 |
+
"learning_rate": 1.4973821989528796e-05,
|
1021 |
+
"loss": 0.9147,
|
1022 |
+
"step": 169
|
1023 |
+
},
|
1024 |
+
{
|
1025 |
+
"epoch": 0.85,
|
1026 |
+
"learning_rate": 1.493891797556719e-05,
|
1027 |
+
"loss": 0.9049,
|
1028 |
+
"step": 170
|
1029 |
+
},
|
1030 |
+
{
|
1031 |
+
"epoch": 0.86,
|
1032 |
+
"learning_rate": 1.4904013961605585e-05,
|
1033 |
+
"loss": 0.8568,
|
1034 |
+
"step": 171
|
1035 |
+
},
|
1036 |
+
{
|
1037 |
+
"epoch": 0.86,
|
1038 |
+
"learning_rate": 1.486910994764398e-05,
|
1039 |
+
"loss": 0.8879,
|
1040 |
+
"step": 172
|
1041 |
+
},
|
1042 |
+
{
|
1043 |
+
"epoch": 0.87,
|
1044 |
+
"learning_rate": 1.4834205933682374e-05,
|
1045 |
+
"loss": 0.9097,
|
1046 |
+
"step": 173
|
1047 |
+
},
|
1048 |
+
{
|
1049 |
+
"epoch": 0.87,
|
1050 |
+
"learning_rate": 1.479930191972077e-05,
|
1051 |
+
"loss": 0.9034,
|
1052 |
+
"step": 174
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 0.88,
|
1056 |
+
"learning_rate": 1.4764397905759162e-05,
|
1057 |
+
"loss": 0.8992,
|
1058 |
+
"step": 175
|
1059 |
+
},
|
1060 |
+
{
|
1061 |
+
"epoch": 0.88,
|
1062 |
+
"learning_rate": 1.4729493891797557e-05,
|
1063 |
+
"loss": 0.8815,
|
1064 |
+
"step": 176
|
1065 |
+
},
|
1066 |
+
{
|
1067 |
+
"epoch": 0.89,
|
1068 |
+
"learning_rate": 1.4694589877835952e-05,
|
1069 |
+
"loss": 0.8874,
|
1070 |
+
"step": 177
|
1071 |
+
},
|
1072 |
+
{
|
1073 |
+
"epoch": 0.89,
|
1074 |
+
"learning_rate": 1.4659685863874346e-05,
|
1075 |
+
"loss": 0.8754,
|
1076 |
+
"step": 178
|
1077 |
+
},
|
1078 |
+
{
|
1079 |
+
"epoch": 0.9,
|
1080 |
+
"learning_rate": 1.4624781849912741e-05,
|
1081 |
+
"loss": 0.8926,
|
1082 |
+
"step": 179
|
1083 |
+
},
|
1084 |
+
{
|
1085 |
+
"epoch": 0.9,
|
1086 |
+
"learning_rate": 1.4589877835951137e-05,
|
1087 |
+
"loss": 0.8894,
|
1088 |
+
"step": 180
|
1089 |
+
},
|
1090 |
+
{
|
1091 |
+
"epoch": 0.91,
|
1092 |
+
"learning_rate": 1.455497382198953e-05,
|
1093 |
+
"loss": 0.8738,
|
1094 |
+
"step": 181
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 0.91,
|
1098 |
+
"learning_rate": 1.4520069808027924e-05,
|
1099 |
+
"loss": 0.9274,
|
1100 |
+
"step": 182
|
1101 |
+
},
|
1102 |
+
{
|
1103 |
+
"epoch": 0.92,
|
1104 |
+
"learning_rate": 1.4485165794066318e-05,
|
1105 |
+
"loss": 0.8875,
|
1106 |
+
"step": 183
|
1107 |
+
},
|
1108 |
+
{
|
1109 |
+
"epoch": 0.92,
|
1110 |
+
"learning_rate": 1.4450261780104713e-05,
|
1111 |
+
"loss": 0.8803,
|
1112 |
+
"step": 184
|
1113 |
+
},
|
1114 |
+
{
|
1115 |
+
"epoch": 0.93,
|
1116 |
+
"learning_rate": 1.4415357766143108e-05,
|
1117 |
+
"loss": 0.881,
|
1118 |
+
"step": 185
|
1119 |
+
},
|
1120 |
+
{
|
1121 |
+
"epoch": 0.93,
|
1122 |
+
"learning_rate": 1.4380453752181502e-05,
|
1123 |
+
"loss": 0.8816,
|
1124 |
+
"step": 186
|
1125 |
+
},
|
1126 |
+
{
|
1127 |
+
"epoch": 0.94,
|
1128 |
+
"learning_rate": 1.4345549738219897e-05,
|
1129 |
+
"loss": 0.8668,
|
1130 |
+
"step": 187
|
1131 |
+
},
|
1132 |
+
{
|
1133 |
+
"epoch": 0.94,
|
1134 |
+
"learning_rate": 1.4310645724258293e-05,
|
1135 |
+
"loss": 0.8928,
|
1136 |
+
"step": 188
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 0.95,
|
1140 |
+
"learning_rate": 1.4275741710296685e-05,
|
1141 |
+
"loss": 0.8654,
|
1142 |
+
"step": 189
|
1143 |
+
},
|
1144 |
+
{
|
1145 |
+
"epoch": 0.95,
|
1146 |
+
"learning_rate": 1.424083769633508e-05,
|
1147 |
+
"loss": 0.8997,
|
1148 |
+
"step": 190
|
1149 |
+
},
|
1150 |
+
{
|
1151 |
+
"epoch": 0.96,
|
1152 |
+
"learning_rate": 1.4205933682373474e-05,
|
1153 |
+
"loss": 0.8917,
|
1154 |
+
"step": 191
|
1155 |
+
},
|
1156 |
+
{
|
1157 |
+
"epoch": 0.96,
|
1158 |
+
"learning_rate": 1.4171029668411869e-05,
|
1159 |
+
"loss": 0.8658,
|
1160 |
+
"step": 192
|
1161 |
+
},
|
1162 |
+
{
|
1163 |
+
"epoch": 0.97,
|
1164 |
+
"learning_rate": 1.4136125654450264e-05,
|
1165 |
+
"loss": 0.8815,
|
1166 |
+
"step": 193
|
1167 |
+
},
|
1168 |
+
{
|
1169 |
+
"epoch": 0.97,
|
1170 |
+
"learning_rate": 1.4101221640488658e-05,
|
1171 |
+
"loss": 0.8945,
|
1172 |
+
"step": 194
|
1173 |
+
},
|
1174 |
+
{
|
1175 |
+
"epoch": 0.98,
|
1176 |
+
"learning_rate": 1.4066317626527052e-05,
|
1177 |
+
"loss": 0.9159,
|
1178 |
+
"step": 195
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 0.98,
|
1182 |
+
"learning_rate": 1.4031413612565445e-05,
|
1183 |
+
"loss": 0.8828,
|
1184 |
+
"step": 196
|
1185 |
+
},
|
1186 |
+
{
|
1187 |
+
"epoch": 0.99,
|
1188 |
+
"learning_rate": 1.399650959860384e-05,
|
1189 |
+
"loss": 0.8701,
|
1190 |
+
"step": 197
|
1191 |
+
},
|
1192 |
+
{
|
1193 |
+
"epoch": 0.99,
|
1194 |
+
"learning_rate": 1.3961605584642234e-05,
|
1195 |
+
"loss": 0.8688,
|
1196 |
+
"step": 198
|
1197 |
+
},
|
1198 |
+
{
|
1199 |
+
"epoch": 1.0,
|
1200 |
+
"learning_rate": 1.392670157068063e-05,
|
1201 |
+
"loss": 0.8803,
|
1202 |
+
"step": 199
|
1203 |
+
},
|
1204 |
+
{
|
1205 |
+
"epoch": 1.0,
|
1206 |
+
"learning_rate": 1.3891797556719025e-05,
|
1207 |
+
"loss": 0.7831,
|
1208 |
+
"step": 200
|
1209 |
+
},
|
1210 |
+
{
|
1211 |
+
"epoch": 1.01,
|
1212 |
+
"learning_rate": 1.3856893542757418e-05,
|
1213 |
+
"loss": 0.773,
|
1214 |
+
"step": 201
|
1215 |
+
},
|
1216 |
+
{
|
1217 |
+
"epoch": 1.01,
|
1218 |
+
"learning_rate": 1.3821989528795812e-05,
|
1219 |
+
"loss": 0.7513,
|
1220 |
+
"step": 202
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 1.02,
|
1224 |
+
"learning_rate": 1.3787085514834206e-05,
|
1225 |
+
"loss": 0.7496,
|
1226 |
+
"step": 203
|
1227 |
+
},
|
1228 |
+
{
|
1229 |
+
"epoch": 1.02,
|
1230 |
+
"learning_rate": 1.3752181500872601e-05,
|
1231 |
+
"loss": 0.76,
|
1232 |
+
"step": 204
|
1233 |
+
},
|
1234 |
+
{
|
1235 |
+
"epoch": 1.03,
|
1236 |
+
"learning_rate": 1.3717277486910996e-05,
|
1237 |
+
"loss": 0.7374,
|
1238 |
+
"step": 205
|
1239 |
+
},
|
1240 |
+
{
|
1241 |
+
"epoch": 1.03,
|
1242 |
+
"learning_rate": 1.368237347294939e-05,
|
1243 |
+
"loss": 0.7383,
|
1244 |
+
"step": 206
|
1245 |
+
},
|
1246 |
+
{
|
1247 |
+
"epoch": 1.04,
|
1248 |
+
"learning_rate": 1.3647469458987785e-05,
|
1249 |
+
"loss": 0.7312,
|
1250 |
+
"step": 207
|
1251 |
+
},
|
1252 |
+
{
|
1253 |
+
"epoch": 1.04,
|
1254 |
+
"learning_rate": 1.361256544502618e-05,
|
1255 |
+
"loss": 0.7314,
|
1256 |
+
"step": 208
|
1257 |
+
},
|
1258 |
+
{
|
1259 |
+
"epoch": 1.05,
|
1260 |
+
"learning_rate": 1.3577661431064573e-05,
|
1261 |
+
"loss": 0.7364,
|
1262 |
+
"step": 209
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 1.05,
|
1266 |
+
"learning_rate": 1.3542757417102968e-05,
|
1267 |
+
"loss": 0.7344,
|
1268 |
+
"step": 210
|
1269 |
+
},
|
1270 |
+
{
|
1271 |
+
"epoch": 1.06,
|
1272 |
+
"learning_rate": 1.3507853403141362e-05,
|
1273 |
+
"loss": 0.7202,
|
1274 |
+
"step": 211
|
1275 |
+
},
|
1276 |
+
{
|
1277 |
+
"epoch": 1.06,
|
1278 |
+
"learning_rate": 1.3472949389179757e-05,
|
1279 |
+
"loss": 0.7173,
|
1280 |
+
"step": 212
|
1281 |
+
},
|
1282 |
+
{
|
1283 |
+
"epoch": 1.07,
|
1284 |
+
"learning_rate": 1.3438045375218152e-05,
|
1285 |
+
"loss": 0.7294,
|
1286 |
+
"step": 213
|
1287 |
+
},
|
1288 |
+
{
|
1289 |
+
"epoch": 1.07,
|
1290 |
+
"learning_rate": 1.3403141361256546e-05,
|
1291 |
+
"loss": 0.7284,
|
1292 |
+
"step": 214
|
1293 |
+
},
|
1294 |
+
{
|
1295 |
+
"epoch": 1.08,
|
1296 |
+
"learning_rate": 1.336823734729494e-05,
|
1297 |
+
"loss": 0.7147,
|
1298 |
+
"step": 215
|
1299 |
+
},
|
1300 |
+
{
|
1301 |
+
"epoch": 1.08,
|
1302 |
+
"learning_rate": 1.3333333333333333e-05,
|
1303 |
+
"loss": 0.7171,
|
1304 |
+
"step": 216
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 1.09,
|
1308 |
+
"learning_rate": 1.3298429319371729e-05,
|
1309 |
+
"loss": 0.7396,
|
1310 |
+
"step": 217
|
1311 |
+
},
|
1312 |
+
{
|
1313 |
+
"epoch": 1.09,
|
1314 |
+
"learning_rate": 1.3263525305410124e-05,
|
1315 |
+
"loss": 0.7201,
|
1316 |
+
"step": 218
|
1317 |
+
},
|
1318 |
+
{
|
1319 |
+
"epoch": 1.1,
|
1320 |
+
"learning_rate": 1.3228621291448518e-05,
|
1321 |
+
"loss": 0.7477,
|
1322 |
+
"step": 219
|
1323 |
+
},
|
1324 |
+
{
|
1325 |
+
"epoch": 1.1,
|
1326 |
+
"learning_rate": 1.3193717277486913e-05,
|
1327 |
+
"loss": 0.7191,
|
1328 |
+
"step": 220
|
1329 |
+
},
|
1330 |
+
{
|
1331 |
+
"epoch": 1.11,
|
1332 |
+
"learning_rate": 1.3158813263525307e-05,
|
1333 |
+
"loss": 0.7346,
|
1334 |
+
"step": 221
|
1335 |
+
},
|
1336 |
+
{
|
1337 |
+
"epoch": 1.11,
|
1338 |
+
"learning_rate": 1.31239092495637e-05,
|
1339 |
+
"loss": 0.7366,
|
1340 |
+
"step": 222
|
1341 |
+
},
|
1342 |
+
{
|
1343 |
+
"epoch": 1.12,
|
1344 |
+
"learning_rate": 1.3089005235602094e-05,
|
1345 |
+
"loss": 0.6966,
|
1346 |
+
"step": 223
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 1.12,
|
1350 |
+
"learning_rate": 1.305410122164049e-05,
|
1351 |
+
"loss": 0.7437,
|
1352 |
+
"step": 224
|
1353 |
+
},
|
1354 |
+
{
|
1355 |
+
"epoch": 1.13,
|
1356 |
+
"learning_rate": 1.3019197207678885e-05,
|
1357 |
+
"loss": 0.7295,
|
1358 |
+
"step": 225
|
1359 |
+
},
|
1360 |
+
{
|
1361 |
+
"epoch": 1.13,
|
1362 |
+
"learning_rate": 1.2984293193717278e-05,
|
1363 |
+
"loss": 0.7344,
|
1364 |
+
"step": 226
|
1365 |
+
},
|
1366 |
+
{
|
1367 |
+
"epoch": 1.14,
|
1368 |
+
"learning_rate": 1.2949389179755674e-05,
|
1369 |
+
"loss": 0.7391,
|
1370 |
+
"step": 227
|
1371 |
+
},
|
1372 |
+
{
|
1373 |
+
"epoch": 1.14,
|
1374 |
+
"learning_rate": 1.2914485165794069e-05,
|
1375 |
+
"loss": 0.7167,
|
1376 |
+
"step": 228
|
1377 |
+
},
|
1378 |
+
{
|
1379 |
+
"epoch": 1.15,
|
1380 |
+
"learning_rate": 1.287958115183246e-05,
|
1381 |
+
"loss": 0.7286,
|
1382 |
+
"step": 229
|
1383 |
+
},
|
1384 |
+
{
|
1385 |
+
"epoch": 1.15,
|
1386 |
+
"learning_rate": 1.2844677137870856e-05,
|
1387 |
+
"loss": 0.7146,
|
1388 |
+
"step": 230
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 1.16,
|
1392 |
+
"learning_rate": 1.280977312390925e-05,
|
1393 |
+
"loss": 0.733,
|
1394 |
+
"step": 231
|
1395 |
+
},
|
1396 |
+
{
|
1397 |
+
"epoch": 1.16,
|
1398 |
+
"learning_rate": 1.2774869109947645e-05,
|
1399 |
+
"loss": 0.7264,
|
1400 |
+
"step": 232
|
1401 |
+
},
|
1402 |
+
{
|
1403 |
+
"epoch": 1.17,
|
1404 |
+
"learning_rate": 1.273996509598604e-05,
|
1405 |
+
"loss": 0.7355,
|
1406 |
+
"step": 233
|
1407 |
+
},
|
1408 |
+
{
|
1409 |
+
"epoch": 1.17,
|
1410 |
+
"learning_rate": 1.2705061082024434e-05,
|
1411 |
+
"loss": 0.7531,
|
1412 |
+
"step": 234
|
1413 |
+
},
|
1414 |
+
{
|
1415 |
+
"epoch": 1.18,
|
1416 |
+
"learning_rate": 1.2670157068062828e-05,
|
1417 |
+
"loss": 0.7303,
|
1418 |
+
"step": 235
|
1419 |
+
},
|
1420 |
+
{
|
1421 |
+
"epoch": 1.18,
|
1422 |
+
"learning_rate": 1.2635253054101221e-05,
|
1423 |
+
"loss": 0.7381,
|
1424 |
+
"step": 236
|
1425 |
+
},
|
1426 |
+
{
|
1427 |
+
"epoch": 1.19,
|
1428 |
+
"learning_rate": 1.2600349040139617e-05,
|
1429 |
+
"loss": 0.7378,
|
1430 |
+
"step": 237
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"epoch": 1.19,
|
1434 |
+
"learning_rate": 1.2565445026178012e-05,
|
1435 |
+
"loss": 0.7516,
|
1436 |
+
"step": 238
|
1437 |
+
},
|
1438 |
+
{
|
1439 |
+
"epoch": 1.2,
|
1440 |
+
"learning_rate": 1.2530541012216406e-05,
|
1441 |
+
"loss": 0.7523,
|
1442 |
+
"step": 239
|
1443 |
+
},
|
1444 |
+
{
|
1445 |
+
"epoch": 1.2,
|
1446 |
+
"learning_rate": 1.2495636998254801e-05,
|
1447 |
+
"loss": 0.7167,
|
1448 |
+
"step": 240
|
1449 |
+
},
|
1450 |
+
{
|
1451 |
+
"epoch": 1.21,
|
1452 |
+
"learning_rate": 1.2460732984293196e-05,
|
1453 |
+
"loss": 0.7255,
|
1454 |
+
"step": 241
|
1455 |
+
},
|
1456 |
+
{
|
1457 |
+
"epoch": 1.21,
|
1458 |
+
"learning_rate": 1.2425828970331588e-05,
|
1459 |
+
"loss": 0.7396,
|
1460 |
+
"step": 242
|
1461 |
+
},
|
1462 |
+
{
|
1463 |
+
"epoch": 1.22,
|
1464 |
+
"learning_rate": 1.2390924956369984e-05,
|
1465 |
+
"loss": 0.719,
|
1466 |
+
"step": 243
|
1467 |
+
},
|
1468 |
+
{
|
1469 |
+
"epoch": 1.22,
|
1470 |
+
"learning_rate": 1.2356020942408377e-05,
|
1471 |
+
"loss": 0.7457,
|
1472 |
+
"step": 244
|
1473 |
+
},
|
1474 |
+
{
|
1475 |
+
"epoch": 1.23,
|
1476 |
+
"learning_rate": 1.2321116928446773e-05,
|
1477 |
+
"loss": 0.7341,
|
1478 |
+
"step": 245
|
1479 |
+
},
|
1480 |
+
{
|
1481 |
+
"epoch": 1.23,
|
1482 |
+
"learning_rate": 1.2286212914485168e-05,
|
1483 |
+
"loss": 0.7342,
|
1484 |
+
"step": 246
|
1485 |
+
},
|
1486 |
+
{
|
1487 |
+
"epoch": 1.24,
|
1488 |
+
"learning_rate": 1.2251308900523562e-05,
|
1489 |
+
"loss": 0.7193,
|
1490 |
+
"step": 247
|
1491 |
+
},
|
1492 |
+
{
|
1493 |
+
"epoch": 1.24,
|
1494 |
+
"learning_rate": 1.2216404886561957e-05,
|
1495 |
+
"loss": 0.7323,
|
1496 |
+
"step": 248
|
1497 |
+
},
|
1498 |
+
{
|
1499 |
+
"epoch": 1.25,
|
1500 |
+
"learning_rate": 1.2181500872600349e-05,
|
1501 |
+
"loss": 0.739,
|
1502 |
+
"step": 249
|
1503 |
+
},
|
1504 |
+
{
|
1505 |
+
"epoch": 1.25,
|
1506 |
+
"learning_rate": 1.2146596858638744e-05,
|
1507 |
+
"loss": 0.7503,
|
1508 |
+
"step": 250
|
1509 |
+
},
|
1510 |
+
{
|
1511 |
+
"epoch": 1.26,
|
1512 |
+
"learning_rate": 1.2111692844677138e-05,
|
1513 |
+
"loss": 0.7408,
|
1514 |
+
"step": 251
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 1.26,
|
1518 |
+
"learning_rate": 1.2076788830715533e-05,
|
1519 |
+
"loss": 0.7302,
|
1520 |
+
"step": 252
|
1521 |
+
},
|
1522 |
+
{
|
1523 |
+
"epoch": 1.27,
|
1524 |
+
"learning_rate": 1.2041884816753929e-05,
|
1525 |
+
"loss": 0.7347,
|
1526 |
+
"step": 253
|
1527 |
+
},
|
1528 |
+
{
|
1529 |
+
"epoch": 1.27,
|
1530 |
+
"learning_rate": 1.2006980802792322e-05,
|
1531 |
+
"loss": 0.724,
|
1532 |
+
"step": 254
|
1533 |
+
},
|
1534 |
+
{
|
1535 |
+
"epoch": 1.28,
|
1536 |
+
"learning_rate": 1.1972076788830716e-05,
|
1537 |
+
"loss": 0.7312,
|
1538 |
+
"step": 255
|
1539 |
+
},
|
1540 |
+
{
|
1541 |
+
"epoch": 1.28,
|
1542 |
+
"learning_rate": 1.193717277486911e-05,
|
1543 |
+
"loss": 0.7115,
|
1544 |
+
"step": 256
|
1545 |
+
},
|
1546 |
+
{
|
1547 |
+
"epoch": 1.29,
|
1548 |
+
"learning_rate": 1.1902268760907505e-05,
|
1549 |
+
"loss": 0.7483,
|
1550 |
+
"step": 257
|
1551 |
+
},
|
1552 |
+
{
|
1553 |
+
"epoch": 1.29,
|
1554 |
+
"learning_rate": 1.18673647469459e-05,
|
1555 |
+
"loss": 0.7235,
|
1556 |
+
"step": 258
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"epoch": 1.3,
|
1560 |
+
"learning_rate": 1.1832460732984294e-05,
|
1561 |
+
"loss": 0.7373,
|
1562 |
+
"step": 259
|
1563 |
+
},
|
1564 |
+
{
|
1565 |
+
"epoch": 1.3,
|
1566 |
+
"learning_rate": 1.179755671902269e-05,
|
1567 |
+
"loss": 0.7455,
|
1568 |
+
"step": 260
|
1569 |
+
},
|
1570 |
+
{
|
1571 |
+
"epoch": 1.31,
|
1572 |
+
"learning_rate": 1.1762652705061085e-05,
|
1573 |
+
"loss": 0.7436,
|
1574 |
+
"step": 261
|
1575 |
+
},
|
1576 |
+
{
|
1577 |
+
"epoch": 1.31,
|
1578 |
+
"learning_rate": 1.1727748691099476e-05,
|
1579 |
+
"loss": 0.7396,
|
1580 |
+
"step": 262
|
1581 |
+
},
|
1582 |
+
{
|
1583 |
+
"epoch": 1.32,
|
1584 |
+
"learning_rate": 1.1692844677137872e-05,
|
1585 |
+
"loss": 0.7305,
|
1586 |
+
"step": 263
|
1587 |
+
},
|
1588 |
+
{
|
1589 |
+
"epoch": 1.32,
|
1590 |
+
"learning_rate": 1.1657940663176265e-05,
|
1591 |
+
"loss": 0.7156,
|
1592 |
+
"step": 264
|
1593 |
+
},
|
1594 |
+
{
|
1595 |
+
"epoch": 1.33,
|
1596 |
+
"learning_rate": 1.162303664921466e-05,
|
1597 |
+
"loss": 0.7453,
|
1598 |
+
"step": 265
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 1.33,
|
1602 |
+
"learning_rate": 1.1588132635253056e-05,
|
1603 |
+
"loss": 0.7052,
|
1604 |
+
"step": 266
|
1605 |
+
},
|
1606 |
+
{
|
1607 |
+
"epoch": 1.34,
|
1608 |
+
"learning_rate": 1.155322862129145e-05,
|
1609 |
+
"loss": 0.7193,
|
1610 |
+
"step": 267
|
1611 |
+
},
|
1612 |
+
{
|
1613 |
+
"epoch": 1.34,
|
1614 |
+
"learning_rate": 1.1518324607329845e-05,
|
1615 |
+
"loss": 0.7203,
|
1616 |
+
"step": 268
|
1617 |
+
},
|
1618 |
+
{
|
1619 |
+
"epoch": 1.35,
|
1620 |
+
"learning_rate": 1.1483420593368237e-05,
|
1621 |
+
"loss": 0.7124,
|
1622 |
+
"step": 269
|
1623 |
+
},
|
1624 |
+
{
|
1625 |
+
"epoch": 1.35,
|
1626 |
+
"learning_rate": 1.1448516579406632e-05,
|
1627 |
+
"loss": 0.7442,
|
1628 |
+
"step": 270
|
1629 |
+
},
|
1630 |
+
{
|
1631 |
+
"epoch": 1.36,
|
1632 |
+
"learning_rate": 1.1413612565445028e-05,
|
1633 |
+
"loss": 0.7334,
|
1634 |
+
"step": 271
|
1635 |
+
},
|
1636 |
+
{
|
1637 |
+
"epoch": 1.36,
|
1638 |
+
"learning_rate": 1.1378708551483421e-05,
|
1639 |
+
"loss": 0.7376,
|
1640 |
+
"step": 272
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 1.37,
|
1644 |
+
"learning_rate": 1.1343804537521817e-05,
|
1645 |
+
"loss": 0.7278,
|
1646 |
+
"step": 273
|
1647 |
+
},
|
1648 |
+
{
|
1649 |
+
"epoch": 1.37,
|
1650 |
+
"learning_rate": 1.130890052356021e-05,
|
1651 |
+
"loss": 0.7569,
|
1652 |
+
"step": 274
|
1653 |
+
},
|
1654 |
+
{
|
1655 |
+
"epoch": 1.38,
|
1656 |
+
"learning_rate": 1.1273996509598604e-05,
|
1657 |
+
"loss": 0.7298,
|
1658 |
+
"step": 275
|
1659 |
+
},
|
1660 |
+
{
|
1661 |
+
"epoch": 1.38,
|
1662 |
+
"learning_rate": 1.1239092495636998e-05,
|
1663 |
+
"loss": 0.731,
|
1664 |
+
"step": 276
|
1665 |
+
},
|
1666 |
+
{
|
1667 |
+
"epoch": 1.39,
|
1668 |
+
"learning_rate": 1.1204188481675393e-05,
|
1669 |
+
"loss": 0.7218,
|
1670 |
+
"step": 277
|
1671 |
+
},
|
1672 |
+
{
|
1673 |
+
"epoch": 1.39,
|
1674 |
+
"learning_rate": 1.1169284467713788e-05,
|
1675 |
+
"loss": 0.7405,
|
1676 |
+
"step": 278
|
1677 |
+
},
|
1678 |
+
{
|
1679 |
+
"epoch": 1.4,
|
1680 |
+
"learning_rate": 1.1134380453752182e-05,
|
1681 |
+
"loss": 0.7411,
|
1682 |
+
"step": 279
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 1.4,
|
1686 |
+
"learning_rate": 1.1099476439790577e-05,
|
1687 |
+
"loss": 0.7355,
|
1688 |
+
"step": 280
|
1689 |
+
},
|
1690 |
+
{
|
1691 |
+
"epoch": 1.41,
|
1692 |
+
"learning_rate": 1.1064572425828973e-05,
|
1693 |
+
"loss": 0.7161,
|
1694 |
+
"step": 281
|
1695 |
+
},
|
1696 |
+
{
|
1697 |
+
"epoch": 1.41,
|
1698 |
+
"learning_rate": 1.1029668411867365e-05,
|
1699 |
+
"loss": 0.7179,
|
1700 |
+
"step": 282
|
1701 |
+
},
|
1702 |
+
{
|
1703 |
+
"epoch": 1.42,
|
1704 |
+
"learning_rate": 1.099476439790576e-05,
|
1705 |
+
"loss": 0.7442,
|
1706 |
+
"step": 283
|
1707 |
+
},
|
1708 |
+
{
|
1709 |
+
"epoch": 1.42,
|
1710 |
+
"learning_rate": 1.0959860383944154e-05,
|
1711 |
+
"loss": 0.756,
|
1712 |
+
"step": 284
|
1713 |
+
},
|
1714 |
+
{
|
1715 |
+
"epoch": 1.43,
|
1716 |
+
"learning_rate": 1.0924956369982549e-05,
|
1717 |
+
"loss": 0.7473,
|
1718 |
+
"step": 285
|
1719 |
+
},
|
1720 |
+
{
|
1721 |
+
"epoch": 1.43,
|
1722 |
+
"learning_rate": 1.0890052356020944e-05,
|
1723 |
+
"loss": 0.7354,
|
1724 |
+
"step": 286
|
1725 |
+
},
|
1726 |
+
{
|
1727 |
+
"epoch": 1.44,
|
1728 |
+
"learning_rate": 1.0855148342059338e-05,
|
1729 |
+
"loss": 0.733,
|
1730 |
+
"step": 287
|
1731 |
+
},
|
1732 |
+
{
|
1733 |
+
"epoch": 1.44,
|
1734 |
+
"learning_rate": 1.0820244328097733e-05,
|
1735 |
+
"loss": 0.7411,
|
1736 |
+
"step": 288
|
1737 |
+
},
|
1738 |
+
{
|
1739 |
+
"epoch": 1.45,
|
1740 |
+
"learning_rate": 1.0785340314136125e-05,
|
1741 |
+
"loss": 0.7489,
|
1742 |
+
"step": 289
|
1743 |
+
},
|
1744 |
+
{
|
1745 |
+
"epoch": 1.45,
|
1746 |
+
"learning_rate": 1.075043630017452e-05,
|
1747 |
+
"loss": 0.7401,
|
1748 |
+
"step": 290
|
1749 |
+
},
|
1750 |
+
{
|
1751 |
+
"epoch": 1.46,
|
1752 |
+
"learning_rate": 1.0715532286212916e-05,
|
1753 |
+
"loss": 0.7402,
|
1754 |
+
"step": 291
|
1755 |
+
},
|
1756 |
+
{
|
1757 |
+
"epoch": 1.46,
|
1758 |
+
"learning_rate": 1.068062827225131e-05,
|
1759 |
+
"loss": 0.7315,
|
1760 |
+
"step": 292
|
1761 |
+
},
|
1762 |
+
{
|
1763 |
+
"epoch": 1.47,
|
1764 |
+
"learning_rate": 1.0645724258289705e-05,
|
1765 |
+
"loss": 0.7617,
|
1766 |
+
"step": 293
|
1767 |
+
},
|
1768 |
+
{
|
1769 |
+
"epoch": 1.47,
|
1770 |
+
"learning_rate": 1.06108202443281e-05,
|
1771 |
+
"loss": 0.7505,
|
1772 |
+
"step": 294
|
1773 |
+
},
|
1774 |
+
{
|
1775 |
+
"epoch": 1.48,
|
1776 |
+
"learning_rate": 1.0575916230366492e-05,
|
1777 |
+
"loss": 0.7291,
|
1778 |
+
"step": 295
|
1779 |
+
},
|
1780 |
+
{
|
1781 |
+
"epoch": 1.48,
|
1782 |
+
"learning_rate": 1.0541012216404887e-05,
|
1783 |
+
"loss": 0.7406,
|
1784 |
+
"step": 296
|
1785 |
+
},
|
1786 |
+
{
|
1787 |
+
"epoch": 1.49,
|
1788 |
+
"learning_rate": 1.0506108202443281e-05,
|
1789 |
+
"loss": 0.7487,
|
1790 |
+
"step": 297
|
1791 |
+
},
|
1792 |
+
{
|
1793 |
+
"epoch": 1.49,
|
1794 |
+
"learning_rate": 1.0471204188481676e-05,
|
1795 |
+
"loss": 0.7284,
|
1796 |
+
"step": 298
|
1797 |
+
},
|
1798 |
+
{
|
1799 |
+
"epoch": 1.5,
|
1800 |
+
"learning_rate": 1.043630017452007e-05,
|
1801 |
+
"loss": 0.7369,
|
1802 |
+
"step": 299
|
1803 |
+
},
|
1804 |
+
{
|
1805 |
+
"epoch": 1.5,
|
1806 |
+
"learning_rate": 1.0401396160558465e-05,
|
1807 |
+
"loss": 0.7416,
|
1808 |
+
"step": 300
|
1809 |
+
},
|
1810 |
+
{
|
1811 |
+
"epoch": 1.51,
|
1812 |
+
"learning_rate": 1.036649214659686e-05,
|
1813 |
+
"loss": 0.733,
|
1814 |
+
"step": 301
|
1815 |
+
},
|
1816 |
+
{
|
1817 |
+
"epoch": 1.51,
|
1818 |
+
"learning_rate": 1.0331588132635253e-05,
|
1819 |
+
"loss": 0.7415,
|
1820 |
+
"step": 302
|
1821 |
+
},
|
1822 |
+
{
|
1823 |
+
"epoch": 1.52,
|
1824 |
+
"learning_rate": 1.0296684118673648e-05,
|
1825 |
+
"loss": 0.7393,
|
1826 |
+
"step": 303
|
1827 |
+
},
|
1828 |
+
{
|
1829 |
+
"epoch": 1.52,
|
1830 |
+
"learning_rate": 1.0261780104712042e-05,
|
1831 |
+
"loss": 0.7148,
|
1832 |
+
"step": 304
|
1833 |
+
},
|
1834 |
+
{
|
1835 |
+
"epoch": 1.53,
|
1836 |
+
"learning_rate": 1.0226876090750437e-05,
|
1837 |
+
"loss": 0.7399,
|
1838 |
+
"step": 305
|
1839 |
+
},
|
1840 |
+
{
|
1841 |
+
"epoch": 1.53,
|
1842 |
+
"learning_rate": 1.0191972076788832e-05,
|
1843 |
+
"loss": 0.7424,
|
1844 |
+
"step": 306
|
1845 |
+
},
|
1846 |
+
{
|
1847 |
+
"epoch": 1.54,
|
1848 |
+
"learning_rate": 1.0157068062827226e-05,
|
1849 |
+
"loss": 0.7453,
|
1850 |
+
"step": 307
|
1851 |
+
},
|
1852 |
+
{
|
1853 |
+
"epoch": 1.54,
|
1854 |
+
"learning_rate": 1.0122164048865621e-05,
|
1855 |
+
"loss": 0.7239,
|
1856 |
+
"step": 308
|
1857 |
+
},
|
1858 |
+
{
|
1859 |
+
"epoch": 1.55,
|
1860 |
+
"learning_rate": 1.0087260034904013e-05,
|
1861 |
+
"loss": 0.724,
|
1862 |
+
"step": 309
|
1863 |
+
},
|
1864 |
+
{
|
1865 |
+
"epoch": 1.55,
|
1866 |
+
"learning_rate": 1.0052356020942409e-05,
|
1867 |
+
"loss": 0.723,
|
1868 |
+
"step": 310
|
1869 |
+
},
|
1870 |
+
{
|
1871 |
+
"epoch": 1.56,
|
1872 |
+
"learning_rate": 1.0017452006980804e-05,
|
1873 |
+
"loss": 0.7421,
|
1874 |
+
"step": 311
|
1875 |
+
},
|
1876 |
+
{
|
1877 |
+
"epoch": 1.56,
|
1878 |
+
"learning_rate": 9.982547993019198e-06,
|
1879 |
+
"loss": 0.729,
|
1880 |
+
"step": 312
|
1881 |
+
},
|
1882 |
+
{
|
1883 |
+
"epoch": 1.57,
|
1884 |
+
"learning_rate": 9.947643979057593e-06,
|
1885 |
+
"loss": 0.7457,
|
1886 |
+
"step": 313
|
1887 |
+
},
|
1888 |
+
{
|
1889 |
+
"epoch": 1.57,
|
1890 |
+
"learning_rate": 9.912739965095987e-06,
|
1891 |
+
"loss": 0.7413,
|
1892 |
+
"step": 314
|
1893 |
+
},
|
1894 |
+
{
|
1895 |
+
"epoch": 1.58,
|
1896 |
+
"learning_rate": 9.877835951134382e-06,
|
1897 |
+
"loss": 0.7206,
|
1898 |
+
"step": 315
|
1899 |
+
},
|
1900 |
+
{
|
1901 |
+
"epoch": 1.58,
|
1902 |
+
"learning_rate": 9.842931937172776e-06,
|
1903 |
+
"loss": 0.731,
|
1904 |
+
"step": 316
|
1905 |
+
},
|
1906 |
+
{
|
1907 |
+
"epoch": 1.59,
|
1908 |
+
"learning_rate": 9.80802792321117e-06,
|
1909 |
+
"loss": 0.7395,
|
1910 |
+
"step": 317
|
1911 |
+
},
|
1912 |
+
{
|
1913 |
+
"epoch": 1.59,
|
1914 |
+
"learning_rate": 9.773123909249565e-06,
|
1915 |
+
"loss": 0.7377,
|
1916 |
+
"step": 318
|
1917 |
+
},
|
1918 |
+
{
|
1919 |
+
"epoch": 1.6,
|
1920 |
+
"learning_rate": 9.73821989528796e-06,
|
1921 |
+
"loss": 0.7589,
|
1922 |
+
"step": 319
|
1923 |
+
},
|
1924 |
+
{
|
1925 |
+
"epoch": 1.6,
|
1926 |
+
"learning_rate": 9.703315881326354e-06,
|
1927 |
+
"loss": 0.7416,
|
1928 |
+
"step": 320
|
1929 |
+
},
|
1930 |
+
{
|
1931 |
+
"epoch": 1.61,
|
1932 |
+
"learning_rate": 9.668411867364747e-06,
|
1933 |
+
"loss": 0.729,
|
1934 |
+
"step": 321
|
1935 |
+
},
|
1936 |
+
{
|
1937 |
+
"epoch": 1.61,
|
1938 |
+
"learning_rate": 9.633507853403143e-06,
|
1939 |
+
"loss": 0.7399,
|
1940 |
+
"step": 322
|
1941 |
+
},
|
1942 |
+
{
|
1943 |
+
"epoch": 1.62,
|
1944 |
+
"learning_rate": 9.598603839441538e-06,
|
1945 |
+
"loss": 0.725,
|
1946 |
+
"step": 323
|
1947 |
+
},
|
1948 |
+
{
|
1949 |
+
"epoch": 1.62,
|
1950 |
+
"learning_rate": 9.563699825479932e-06,
|
1951 |
+
"loss": 0.7292,
|
1952 |
+
"step": 324
|
1953 |
+
},
|
1954 |
+
{
|
1955 |
+
"epoch": 1.63,
|
1956 |
+
"learning_rate": 9.528795811518325e-06,
|
1957 |
+
"loss": 0.7538,
|
1958 |
+
"step": 325
|
1959 |
+
},
|
1960 |
+
{
|
1961 |
+
"epoch": 1.63,
|
1962 |
+
"learning_rate": 9.49389179755672e-06,
|
1963 |
+
"loss": 0.7275,
|
1964 |
+
"step": 326
|
1965 |
+
},
|
1966 |
+
{
|
1967 |
+
"epoch": 1.64,
|
1968 |
+
"learning_rate": 9.458987783595114e-06,
|
1969 |
+
"loss": 0.7176,
|
1970 |
+
"step": 327
|
1971 |
+
},
|
1972 |
+
{
|
1973 |
+
"epoch": 1.64,
|
1974 |
+
"learning_rate": 9.424083769633508e-06,
|
1975 |
+
"loss": 0.7359,
|
1976 |
+
"step": 328
|
1977 |
+
},
|
1978 |
+
{
|
1979 |
+
"epoch": 1.65,
|
1980 |
+
"learning_rate": 9.389179755671903e-06,
|
1981 |
+
"loss": 0.7267,
|
1982 |
+
"step": 329
|
1983 |
+
},
|
1984 |
+
{
|
1985 |
+
"epoch": 1.65,
|
1986 |
+
"learning_rate": 9.354275741710297e-06,
|
1987 |
+
"loss": 0.7684,
|
1988 |
+
"step": 330
|
1989 |
+
},
|
1990 |
+
{
|
1991 |
+
"epoch": 1.66,
|
1992 |
+
"learning_rate": 9.319371727748692e-06,
|
1993 |
+
"loss": 0.7479,
|
1994 |
+
"step": 331
|
1995 |
+
},
|
1996 |
+
{
|
1997 |
+
"epoch": 1.66,
|
1998 |
+
"learning_rate": 9.284467713787086e-06,
|
1999 |
+
"loss": 0.729,
|
2000 |
+
"step": 332
|
2001 |
+
},
|
2002 |
+
{
|
2003 |
+
"epoch": 1.67,
|
2004 |
+
"learning_rate": 9.249563699825481e-06,
|
2005 |
+
"loss": 0.7442,
|
2006 |
+
"step": 333
|
2007 |
+
},
|
2008 |
+
{
|
2009 |
+
"epoch": 1.67,
|
2010 |
+
"learning_rate": 9.214659685863875e-06,
|
2011 |
+
"loss": 0.726,
|
2012 |
+
"step": 334
|
2013 |
+
},
|
2014 |
+
{
|
2015 |
+
"epoch": 1.68,
|
2016 |
+
"learning_rate": 9.17975567190227e-06,
|
2017 |
+
"loss": 0.7368,
|
2018 |
+
"step": 335
|
2019 |
+
},
|
2020 |
+
{
|
2021 |
+
"epoch": 1.68,
|
2022 |
+
"learning_rate": 9.144851657940664e-06,
|
2023 |
+
"loss": 0.7198,
|
2024 |
+
"step": 336
|
2025 |
+
},
|
2026 |
+
{
|
2027 |
+
"epoch": 1.69,
|
2028 |
+
"learning_rate": 9.109947643979057e-06,
|
2029 |
+
"loss": 0.7173,
|
2030 |
+
"step": 337
|
2031 |
+
},
|
2032 |
+
{
|
2033 |
+
"epoch": 1.69,
|
2034 |
+
"learning_rate": 9.075043630017453e-06,
|
2035 |
+
"loss": 0.7129,
|
2036 |
+
"step": 338
|
2037 |
+
},
|
2038 |
+
{
|
2039 |
+
"epoch": 1.7,
|
2040 |
+
"learning_rate": 9.040139616055848e-06,
|
2041 |
+
"loss": 0.7412,
|
2042 |
+
"step": 339
|
2043 |
+
},
|
2044 |
+
{
|
2045 |
+
"epoch": 1.7,
|
2046 |
+
"learning_rate": 9.005235602094242e-06,
|
2047 |
+
"loss": 0.742,
|
2048 |
+
"step": 340
|
2049 |
+
},
|
2050 |
+
{
|
2051 |
+
"epoch": 1.71,
|
2052 |
+
"learning_rate": 8.970331588132635e-06,
|
2053 |
+
"loss": 0.7335,
|
2054 |
+
"step": 341
|
2055 |
+
},
|
2056 |
+
{
|
2057 |
+
"epoch": 1.71,
|
2058 |
+
"learning_rate": 8.93542757417103e-06,
|
2059 |
+
"loss": 0.7235,
|
2060 |
+
"step": 342
|
2061 |
+
},
|
2062 |
+
{
|
2063 |
+
"epoch": 1.72,
|
2064 |
+
"learning_rate": 8.900523560209426e-06,
|
2065 |
+
"loss": 0.7321,
|
2066 |
+
"step": 343
|
2067 |
+
},
|
2068 |
+
{
|
2069 |
+
"epoch": 1.72,
|
2070 |
+
"learning_rate": 8.86561954624782e-06,
|
2071 |
+
"loss": 0.6992,
|
2072 |
+
"step": 344
|
2073 |
+
},
|
2074 |
+
{
|
2075 |
+
"epoch": 1.73,
|
2076 |
+
"learning_rate": 8.830715532286213e-06,
|
2077 |
+
"loss": 0.7379,
|
2078 |
+
"step": 345
|
2079 |
+
},
|
2080 |
+
{
|
2081 |
+
"epoch": 1.73,
|
2082 |
+
"learning_rate": 8.795811518324609e-06,
|
2083 |
+
"loss": 0.742,
|
2084 |
+
"step": 346
|
2085 |
+
},
|
2086 |
+
{
|
2087 |
+
"epoch": 1.74,
|
2088 |
+
"learning_rate": 8.760907504363002e-06,
|
2089 |
+
"loss": 0.7271,
|
2090 |
+
"step": 347
|
2091 |
+
},
|
2092 |
+
{
|
2093 |
+
"epoch": 1.74,
|
2094 |
+
"learning_rate": 8.726003490401398e-06,
|
2095 |
+
"loss": 0.7312,
|
2096 |
+
"step": 348
|
2097 |
+
},
|
2098 |
+
{
|
2099 |
+
"epoch": 1.75,
|
2100 |
+
"learning_rate": 8.691099476439791e-06,
|
2101 |
+
"loss": 0.7292,
|
2102 |
+
"step": 349
|
2103 |
+
},
|
2104 |
+
{
|
2105 |
+
"epoch": 1.75,
|
2106 |
+
"learning_rate": 8.656195462478185e-06,
|
2107 |
+
"loss": 0.722,
|
2108 |
+
"step": 350
|
2109 |
+
},
|
2110 |
+
{
|
2111 |
+
"epoch": 1.76,
|
2112 |
+
"learning_rate": 8.62129144851658e-06,
|
2113 |
+
"loss": 0.706,
|
2114 |
+
"step": 351
|
2115 |
+
},
|
2116 |
+
{
|
2117 |
+
"epoch": 1.76,
|
2118 |
+
"learning_rate": 8.586387434554974e-06,
|
2119 |
+
"loss": 0.7335,
|
2120 |
+
"step": 352
|
2121 |
+
},
|
2122 |
+
{
|
2123 |
+
"epoch": 1.77,
|
2124 |
+
"learning_rate": 8.55148342059337e-06,
|
2125 |
+
"loss": 0.7317,
|
2126 |
+
"step": 353
|
2127 |
+
},
|
2128 |
+
{
|
2129 |
+
"epoch": 1.77,
|
2130 |
+
"learning_rate": 8.516579406631763e-06,
|
2131 |
+
"loss": 0.7313,
|
2132 |
+
"step": 354
|
2133 |
+
},
|
2134 |
+
{
|
2135 |
+
"epoch": 1.78,
|
2136 |
+
"learning_rate": 8.481675392670158e-06,
|
2137 |
+
"loss": 0.7308,
|
2138 |
+
"step": 355
|
2139 |
+
},
|
2140 |
+
{
|
2141 |
+
"epoch": 1.78,
|
2142 |
+
"learning_rate": 8.446771378708552e-06,
|
2143 |
+
"loss": 0.7521,
|
2144 |
+
"step": 356
|
2145 |
+
},
|
2146 |
+
{
|
2147 |
+
"epoch": 1.79,
|
2148 |
+
"learning_rate": 8.411867364746945e-06,
|
2149 |
+
"loss": 0.7206,
|
2150 |
+
"step": 357
|
2151 |
+
},
|
2152 |
+
{
|
2153 |
+
"epoch": 1.79,
|
2154 |
+
"learning_rate": 8.37696335078534e-06,
|
2155 |
+
"loss": 0.7184,
|
2156 |
+
"step": 358
|
2157 |
+
},
|
2158 |
+
{
|
2159 |
+
"epoch": 1.8,
|
2160 |
+
"learning_rate": 8.342059336823736e-06,
|
2161 |
+
"loss": 0.7268,
|
2162 |
+
"step": 359
|
2163 |
+
},
|
2164 |
+
{
|
2165 |
+
"epoch": 1.8,
|
2166 |
+
"learning_rate": 8.30715532286213e-06,
|
2167 |
+
"loss": 0.7283,
|
2168 |
+
"step": 360
|
2169 |
+
},
|
2170 |
+
{
|
2171 |
+
"epoch": 1.81,
|
2172 |
+
"learning_rate": 8.272251308900523e-06,
|
2173 |
+
"loss": 0.7294,
|
2174 |
+
"step": 361
|
2175 |
+
},
|
2176 |
+
{
|
2177 |
+
"epoch": 1.81,
|
2178 |
+
"learning_rate": 8.237347294938919e-06,
|
2179 |
+
"loss": 0.7103,
|
2180 |
+
"step": 362
|
2181 |
+
},
|
2182 |
+
{
|
2183 |
+
"epoch": 1.82,
|
2184 |
+
"learning_rate": 8.202443280977314e-06,
|
2185 |
+
"loss": 0.7449,
|
2186 |
+
"step": 363
|
2187 |
+
},
|
2188 |
+
{
|
2189 |
+
"epoch": 1.82,
|
2190 |
+
"learning_rate": 8.167539267015708e-06,
|
2191 |
+
"loss": 0.73,
|
2192 |
+
"step": 364
|
2193 |
+
},
|
2194 |
+
{
|
2195 |
+
"epoch": 1.83,
|
2196 |
+
"learning_rate": 8.132635253054101e-06,
|
2197 |
+
"loss": 0.7418,
|
2198 |
+
"step": 365
|
2199 |
+
},
|
2200 |
+
{
|
2201 |
+
"epoch": 1.83,
|
2202 |
+
"learning_rate": 8.097731239092497e-06,
|
2203 |
+
"loss": 0.7366,
|
2204 |
+
"step": 366
|
2205 |
+
},
|
2206 |
+
{
|
2207 |
+
"epoch": 1.84,
|
2208 |
+
"learning_rate": 8.06282722513089e-06,
|
2209 |
+
"loss": 0.7339,
|
2210 |
+
"step": 367
|
2211 |
+
},
|
2212 |
+
{
|
2213 |
+
"epoch": 1.84,
|
2214 |
+
"learning_rate": 8.027923211169286e-06,
|
2215 |
+
"loss": 0.707,
|
2216 |
+
"step": 368
|
2217 |
+
},
|
2218 |
+
{
|
2219 |
+
"epoch": 1.85,
|
2220 |
+
"learning_rate": 7.99301919720768e-06,
|
2221 |
+
"loss": 0.7308,
|
2222 |
+
"step": 369
|
2223 |
+
},
|
2224 |
+
{
|
2225 |
+
"epoch": 1.85,
|
2226 |
+
"learning_rate": 7.958115183246073e-06,
|
2227 |
+
"loss": 0.7418,
|
2228 |
+
"step": 370
|
2229 |
+
},
|
2230 |
+
{
|
2231 |
+
"epoch": 1.86,
|
2232 |
+
"learning_rate": 7.923211169284468e-06,
|
2233 |
+
"loss": 0.723,
|
2234 |
+
"step": 371
|
2235 |
+
},
|
2236 |
+
{
|
2237 |
+
"epoch": 1.86,
|
2238 |
+
"learning_rate": 7.888307155322864e-06,
|
2239 |
+
"loss": 0.7444,
|
2240 |
+
"step": 372
|
2241 |
+
},
|
2242 |
+
{
|
2243 |
+
"epoch": 1.87,
|
2244 |
+
"learning_rate": 7.853403141361257e-06,
|
2245 |
+
"loss": 0.7612,
|
2246 |
+
"step": 373
|
2247 |
+
},
|
2248 |
+
{
|
2249 |
+
"epoch": 1.87,
|
2250 |
+
"learning_rate": 7.818499127399651e-06,
|
2251 |
+
"loss": 0.7148,
|
2252 |
+
"step": 374
|
2253 |
+
},
|
2254 |
+
{
|
2255 |
+
"epoch": 1.88,
|
2256 |
+
"learning_rate": 7.783595113438046e-06,
|
2257 |
+
"loss": 0.7247,
|
2258 |
+
"step": 375
|
2259 |
+
},
|
2260 |
+
{
|
2261 |
+
"epoch": 1.88,
|
2262 |
+
"learning_rate": 7.748691099476442e-06,
|
2263 |
+
"loss": 0.7161,
|
2264 |
+
"step": 376
|
2265 |
+
},
|
2266 |
+
{
|
2267 |
+
"epoch": 1.89,
|
2268 |
+
"learning_rate": 7.713787085514834e-06,
|
2269 |
+
"loss": 0.7299,
|
2270 |
+
"step": 377
|
2271 |
+
},
|
2272 |
+
{
|
2273 |
+
"epoch": 1.89,
|
2274 |
+
"learning_rate": 7.678883071553229e-06,
|
2275 |
+
"loss": 0.7415,
|
2276 |
+
"step": 378
|
2277 |
+
},
|
2278 |
+
{
|
2279 |
+
"epoch": 1.9,
|
2280 |
+
"learning_rate": 7.643979057591624e-06,
|
2281 |
+
"loss": 0.7202,
|
2282 |
+
"step": 379
|
2283 |
+
},
|
2284 |
+
{
|
2285 |
+
"epoch": 1.9,
|
2286 |
+
"learning_rate": 7.609075043630018e-06,
|
2287 |
+
"loss": 0.7249,
|
2288 |
+
"step": 380
|
2289 |
+
},
|
2290 |
+
{
|
2291 |
+
"epoch": 1.91,
|
2292 |
+
"learning_rate": 7.5741710296684124e-06,
|
2293 |
+
"loss": 0.7068,
|
2294 |
+
"step": 381
|
2295 |
+
},
|
2296 |
+
{
|
2297 |
+
"epoch": 1.91,
|
2298 |
+
"learning_rate": 7.539267015706807e-06,
|
2299 |
+
"loss": 0.7654,
|
2300 |
+
"step": 382
|
2301 |
+
},
|
2302 |
+
{
|
2303 |
+
"epoch": 1.92,
|
2304 |
+
"learning_rate": 7.504363001745201e-06,
|
2305 |
+
"loss": 0.7133,
|
2306 |
+
"step": 383
|
2307 |
+
},
|
2308 |
+
{
|
2309 |
+
"epoch": 1.92,
|
2310 |
+
"learning_rate": 7.469458987783595e-06,
|
2311 |
+
"loss": 0.7313,
|
2312 |
+
"step": 384
|
2313 |
+
},
|
2314 |
+
{
|
2315 |
+
"epoch": 1.93,
|
2316 |
+
"learning_rate": 7.43455497382199e-06,
|
2317 |
+
"loss": 0.7407,
|
2318 |
+
"step": 385
|
2319 |
+
},
|
2320 |
+
{
|
2321 |
+
"epoch": 1.93,
|
2322 |
+
"learning_rate": 7.399650959860385e-06,
|
2323 |
+
"loss": 0.724,
|
2324 |
+
"step": 386
|
2325 |
+
},
|
2326 |
+
{
|
2327 |
+
"epoch": 1.94,
|
2328 |
+
"learning_rate": 7.3647469458987785e-06,
|
2329 |
+
"loss": 0.748,
|
2330 |
+
"step": 387
|
2331 |
+
},
|
2332 |
+
{
|
2333 |
+
"epoch": 1.94,
|
2334 |
+
"learning_rate": 7.329842931937173e-06,
|
2335 |
+
"loss": 0.7445,
|
2336 |
+
"step": 388
|
2337 |
+
},
|
2338 |
+
{
|
2339 |
+
"epoch": 1.95,
|
2340 |
+
"learning_rate": 7.294938917975568e-06,
|
2341 |
+
"loss": 0.7191,
|
2342 |
+
"step": 389
|
2343 |
+
},
|
2344 |
+
{
|
2345 |
+
"epoch": 1.95,
|
2346 |
+
"learning_rate": 7.260034904013962e-06,
|
2347 |
+
"loss": 0.7436,
|
2348 |
+
"step": 390
|
2349 |
+
},
|
2350 |
+
{
|
2351 |
+
"epoch": 1.96,
|
2352 |
+
"learning_rate": 7.2251308900523565e-06,
|
2353 |
+
"loss": 0.7303,
|
2354 |
+
"step": 391
|
2355 |
+
},
|
2356 |
+
{
|
2357 |
+
"epoch": 1.96,
|
2358 |
+
"learning_rate": 7.190226876090751e-06,
|
2359 |
+
"loss": 0.7373,
|
2360 |
+
"step": 392
|
2361 |
+
},
|
2362 |
+
{
|
2363 |
+
"epoch": 1.97,
|
2364 |
+
"learning_rate": 7.155322862129146e-06,
|
2365 |
+
"loss": 0.7105,
|
2366 |
+
"step": 393
|
2367 |
+
},
|
2368 |
+
{
|
2369 |
+
"epoch": 1.97,
|
2370 |
+
"learning_rate": 7.12041884816754e-06,
|
2371 |
+
"loss": 0.7306,
|
2372 |
+
"step": 394
|
2373 |
+
},
|
2374 |
+
{
|
2375 |
+
"epoch": 1.98,
|
2376 |
+
"learning_rate": 7.0855148342059345e-06,
|
2377 |
+
"loss": 0.7046,
|
2378 |
+
"step": 395
|
2379 |
+
},
|
2380 |
+
{
|
2381 |
+
"epoch": 1.98,
|
2382 |
+
"learning_rate": 7.050610820244329e-06,
|
2383 |
+
"loss": 0.7337,
|
2384 |
+
"step": 396
|
2385 |
+
},
|
2386 |
+
{
|
2387 |
+
"epoch": 1.99,
|
2388 |
+
"learning_rate": 7.015706806282723e-06,
|
2389 |
+
"loss": 0.7273,
|
2390 |
+
"step": 397
|
2391 |
+
},
|
2392 |
+
{
|
2393 |
+
"epoch": 1.99,
|
2394 |
+
"learning_rate": 6.980802792321117e-06,
|
2395 |
+
"loss": 0.7332,
|
2396 |
+
"step": 398
|
2397 |
+
},
|
2398 |
+
{
|
2399 |
+
"epoch": 2.0,
|
2400 |
+
"learning_rate": 6.945898778359512e-06,
|
2401 |
+
"loss": 0.6763,
|
2402 |
+
"step": 399
|
2403 |
+
},
|
2404 |
+
{
|
2405 |
+
"epoch": 2.01,
|
2406 |
+
"learning_rate": 6.910994764397906e-06,
|
2407 |
+
"loss": 0.5935,
|
2408 |
+
"step": 400
|
2409 |
+
},
|
2410 |
+
{
|
2411 |
+
"epoch": 2.01,
|
2412 |
+
"learning_rate": 6.8760907504363005e-06,
|
2413 |
+
"loss": 0.5917,
|
2414 |
+
"step": 401
|
2415 |
+
},
|
2416 |
+
{
|
2417 |
+
"epoch": 2.02,
|
2418 |
+
"learning_rate": 6.841186736474695e-06,
|
2419 |
+
"loss": 0.5795,
|
2420 |
+
"step": 402
|
2421 |
+
},
|
2422 |
+
{
|
2423 |
+
"epoch": 2.02,
|
2424 |
+
"learning_rate": 6.80628272251309e-06,
|
2425 |
+
"loss": 0.5724,
|
2426 |
+
"step": 403
|
2427 |
+
},
|
2428 |
+
{
|
2429 |
+
"epoch": 2.03,
|
2430 |
+
"learning_rate": 6.771378708551484e-06,
|
2431 |
+
"loss": 0.5707,
|
2432 |
+
"step": 404
|
2433 |
+
},
|
2434 |
+
{
|
2435 |
+
"epoch": 2.03,
|
2436 |
+
"learning_rate": 6.7364746945898785e-06,
|
2437 |
+
"loss": 0.5947,
|
2438 |
+
"step": 405
|
2439 |
+
},
|
2440 |
+
{
|
2441 |
+
"epoch": 2.04,
|
2442 |
+
"learning_rate": 6.701570680628273e-06,
|
2443 |
+
"loss": 0.5856,
|
2444 |
+
"step": 406
|
2445 |
+
},
|
2446 |
+
{
|
2447 |
+
"epoch": 2.04,
|
2448 |
+
"learning_rate": 6.666666666666667e-06,
|
2449 |
+
"loss": 0.5873,
|
2450 |
+
"step": 407
|
2451 |
+
},
|
2452 |
+
{
|
2453 |
+
"epoch": 2.05,
|
2454 |
+
"learning_rate": 6.631762652705062e-06,
|
2455 |
+
"loss": 0.5581,
|
2456 |
+
"step": 408
|
2457 |
+
},
|
2458 |
+
{
|
2459 |
+
"epoch": 2.05,
|
2460 |
+
"learning_rate": 6.5968586387434565e-06,
|
2461 |
+
"loss": 0.5864,
|
2462 |
+
"step": 409
|
2463 |
+
},
|
2464 |
+
{
|
2465 |
+
"epoch": 2.06,
|
2466 |
+
"learning_rate": 6.56195462478185e-06,
|
2467 |
+
"loss": 0.5866,
|
2468 |
+
"step": 410
|
2469 |
+
},
|
2470 |
+
{
|
2471 |
+
"epoch": 2.06,
|
2472 |
+
"learning_rate": 6.527050610820245e-06,
|
2473 |
+
"loss": 0.6144,
|
2474 |
+
"step": 411
|
2475 |
+
},
|
2476 |
+
{
|
2477 |
+
"epoch": 2.07,
|
2478 |
+
"learning_rate": 6.492146596858639e-06,
|
2479 |
+
"loss": 0.5727,
|
2480 |
+
"step": 412
|
2481 |
+
},
|
2482 |
+
{
|
2483 |
+
"epoch": 2.07,
|
2484 |
+
"learning_rate": 6.4572425828970344e-06,
|
2485 |
+
"loss": 0.5816,
|
2486 |
+
"step": 413
|
2487 |
+
},
|
2488 |
+
{
|
2489 |
+
"epoch": 2.08,
|
2490 |
+
"learning_rate": 6.422338568935428e-06,
|
2491 |
+
"loss": 0.5662,
|
2492 |
+
"step": 414
|
2493 |
+
},
|
2494 |
+
{
|
2495 |
+
"epoch": 2.08,
|
2496 |
+
"learning_rate": 6.3874345549738226e-06,
|
2497 |
+
"loss": 0.57,
|
2498 |
+
"step": 415
|
2499 |
+
},
|
2500 |
+
{
|
2501 |
+
"epoch": 2.09,
|
2502 |
+
"learning_rate": 6.352530541012217e-06,
|
2503 |
+
"loss": 0.5965,
|
2504 |
+
"step": 416
|
2505 |
+
},
|
2506 |
+
{
|
2507 |
+
"epoch": 2.09,
|
2508 |
+
"learning_rate": 6.317626527050611e-06,
|
2509 |
+
"loss": 0.5402,
|
2510 |
+
"step": 417
|
2511 |
+
},
|
2512 |
+
{
|
2513 |
+
"epoch": 2.1,
|
2514 |
+
"learning_rate": 6.282722513089006e-06,
|
2515 |
+
"loss": 0.5626,
|
2516 |
+
"step": 418
|
2517 |
+
},
|
2518 |
+
{
|
2519 |
+
"epoch": 2.1,
|
2520 |
+
"learning_rate": 6.2478184991274005e-06,
|
2521 |
+
"loss": 0.5822,
|
2522 |
+
"step": 419
|
2523 |
+
},
|
2524 |
+
{
|
2525 |
+
"epoch": 2.11,
|
2526 |
+
"learning_rate": 6.212914485165794e-06,
|
2527 |
+
"loss": 0.5609,
|
2528 |
+
"step": 420
|
2529 |
+
},
|
2530 |
+
{
|
2531 |
+
"epoch": 2.11,
|
2532 |
+
"learning_rate": 6.178010471204189e-06,
|
2533 |
+
"loss": 0.5886,
|
2534 |
+
"step": 421
|
2535 |
+
},
|
2536 |
+
{
|
2537 |
+
"epoch": 2.12,
|
2538 |
+
"learning_rate": 6.143106457242584e-06,
|
2539 |
+
"loss": 0.5705,
|
2540 |
+
"step": 422
|
2541 |
+
},
|
2542 |
+
{
|
2543 |
+
"epoch": 2.12,
|
2544 |
+
"learning_rate": 6.1082024432809785e-06,
|
2545 |
+
"loss": 0.5777,
|
2546 |
+
"step": 423
|
2547 |
+
},
|
2548 |
+
{
|
2549 |
+
"epoch": 2.13,
|
2550 |
+
"learning_rate": 6.073298429319372e-06,
|
2551 |
+
"loss": 0.5606,
|
2552 |
+
"step": 424
|
2553 |
+
},
|
2554 |
+
{
|
2555 |
+
"epoch": 2.13,
|
2556 |
+
"learning_rate": 6.038394415357767e-06,
|
2557 |
+
"loss": 0.5772,
|
2558 |
+
"step": 425
|
2559 |
+
},
|
2560 |
+
{
|
2561 |
+
"epoch": 2.14,
|
2562 |
+
"learning_rate": 6.003490401396161e-06,
|
2563 |
+
"loss": 0.5626,
|
2564 |
+
"step": 426
|
2565 |
+
},
|
2566 |
+
{
|
2567 |
+
"epoch": 2.14,
|
2568 |
+
"learning_rate": 5.968586387434555e-06,
|
2569 |
+
"loss": 0.5919,
|
2570 |
+
"step": 427
|
2571 |
+
},
|
2572 |
+
{
|
2573 |
+
"epoch": 2.15,
|
2574 |
+
"learning_rate": 5.93368237347295e-06,
|
2575 |
+
"loss": 0.5642,
|
2576 |
+
"step": 428
|
2577 |
+
},
|
2578 |
+
{
|
2579 |
+
"epoch": 2.15,
|
2580 |
+
"learning_rate": 5.898778359511345e-06,
|
2581 |
+
"loss": 0.5702,
|
2582 |
+
"step": 429
|
2583 |
+
},
|
2584 |
+
{
|
2585 |
+
"epoch": 2.16,
|
2586 |
+
"learning_rate": 5.863874345549738e-06,
|
2587 |
+
"loss": 0.5746,
|
2588 |
+
"step": 430
|
2589 |
+
},
|
2590 |
+
{
|
2591 |
+
"epoch": 2.16,
|
2592 |
+
"learning_rate": 5.828970331588133e-06,
|
2593 |
+
"loss": 0.579,
|
2594 |
+
"step": 431
|
2595 |
+
},
|
2596 |
+
{
|
2597 |
+
"epoch": 2.17,
|
2598 |
+
"learning_rate": 5.794066317626528e-06,
|
2599 |
+
"loss": 0.5748,
|
2600 |
+
"step": 432
|
2601 |
+
},
|
2602 |
+
{
|
2603 |
+
"epoch": 2.17,
|
2604 |
+
"learning_rate": 5.7591623036649226e-06,
|
2605 |
+
"loss": 0.5669,
|
2606 |
+
"step": 433
|
2607 |
+
},
|
2608 |
+
{
|
2609 |
+
"epoch": 2.18,
|
2610 |
+
"learning_rate": 5.724258289703316e-06,
|
2611 |
+
"loss": 0.5597,
|
2612 |
+
"step": 434
|
2613 |
+
},
|
2614 |
+
{
|
2615 |
+
"epoch": 2.18,
|
2616 |
+
"learning_rate": 5.689354275741711e-06,
|
2617 |
+
"loss": 0.5823,
|
2618 |
+
"step": 435
|
2619 |
+
},
|
2620 |
+
{
|
2621 |
+
"epoch": 2.19,
|
2622 |
+
"learning_rate": 5.654450261780105e-06,
|
2623 |
+
"loss": 0.5701,
|
2624 |
+
"step": 436
|
2625 |
+
},
|
2626 |
+
{
|
2627 |
+
"epoch": 2.19,
|
2628 |
+
"learning_rate": 5.619546247818499e-06,
|
2629 |
+
"loss": 0.5648,
|
2630 |
+
"step": 437
|
2631 |
+
},
|
2632 |
+
{
|
2633 |
+
"epoch": 2.2,
|
2634 |
+
"learning_rate": 5.584642233856894e-06,
|
2635 |
+
"loss": 0.5789,
|
2636 |
+
"step": 438
|
2637 |
+
},
|
2638 |
+
{
|
2639 |
+
"epoch": 2.2,
|
2640 |
+
"learning_rate": 5.549738219895289e-06,
|
2641 |
+
"loss": 0.5732,
|
2642 |
+
"step": 439
|
2643 |
+
},
|
2644 |
+
{
|
2645 |
+
"epoch": 2.21,
|
2646 |
+
"learning_rate": 5.514834205933682e-06,
|
2647 |
+
"loss": 0.5816,
|
2648 |
+
"step": 440
|
2649 |
+
},
|
2650 |
+
{
|
2651 |
+
"epoch": 2.21,
|
2652 |
+
"learning_rate": 5.479930191972077e-06,
|
2653 |
+
"loss": 0.5864,
|
2654 |
+
"step": 441
|
2655 |
+
},
|
2656 |
+
{
|
2657 |
+
"epoch": 2.22,
|
2658 |
+
"learning_rate": 5.445026178010472e-06,
|
2659 |
+
"loss": 0.5709,
|
2660 |
+
"step": 442
|
2661 |
+
},
|
2662 |
+
{
|
2663 |
+
"epoch": 2.22,
|
2664 |
+
"learning_rate": 5.410122164048867e-06,
|
2665 |
+
"loss": 0.5881,
|
2666 |
+
"step": 443
|
2667 |
+
},
|
2668 |
+
{
|
2669 |
+
"epoch": 2.23,
|
2670 |
+
"learning_rate": 5.37521815008726e-06,
|
2671 |
+
"loss": 0.573,
|
2672 |
+
"step": 444
|
2673 |
+
},
|
2674 |
+
{
|
2675 |
+
"epoch": 2.23,
|
2676 |
+
"learning_rate": 5.340314136125655e-06,
|
2677 |
+
"loss": 0.5668,
|
2678 |
+
"step": 445
|
2679 |
+
},
|
2680 |
+
{
|
2681 |
+
"epoch": 2.24,
|
2682 |
+
"learning_rate": 5.30541012216405e-06,
|
2683 |
+
"loss": 0.5864,
|
2684 |
+
"step": 446
|
2685 |
+
},
|
2686 |
+
{
|
2687 |
+
"epoch": 2.24,
|
2688 |
+
"learning_rate": 5.270506108202444e-06,
|
2689 |
+
"loss": 0.5532,
|
2690 |
+
"step": 447
|
2691 |
+
},
|
2692 |
+
{
|
2693 |
+
"epoch": 2.25,
|
2694 |
+
"learning_rate": 5.235602094240838e-06,
|
2695 |
+
"loss": 0.5632,
|
2696 |
+
"step": 448
|
2697 |
+
},
|
2698 |
+
{
|
2699 |
+
"epoch": 2.25,
|
2700 |
+
"learning_rate": 5.200698080279233e-06,
|
2701 |
+
"loss": 0.569,
|
2702 |
+
"step": 449
|
2703 |
+
},
|
2704 |
+
{
|
2705 |
+
"epoch": 2.26,
|
2706 |
+
"learning_rate": 5.165794066317626e-06,
|
2707 |
+
"loss": 0.5748,
|
2708 |
+
"step": 450
|
2709 |
+
},
|
2710 |
+
{
|
2711 |
+
"epoch": 2.26,
|
2712 |
+
"learning_rate": 5.130890052356021e-06,
|
2713 |
+
"loss": 0.561,
|
2714 |
+
"step": 451
|
2715 |
+
},
|
2716 |
+
{
|
2717 |
+
"epoch": 2.27,
|
2718 |
+
"learning_rate": 5.095986038394416e-06,
|
2719 |
+
"loss": 0.5661,
|
2720 |
+
"step": 452
|
2721 |
+
},
|
2722 |
+
{
|
2723 |
+
"epoch": 2.27,
|
2724 |
+
"learning_rate": 5.061082024432811e-06,
|
2725 |
+
"loss": 0.5458,
|
2726 |
+
"step": 453
|
2727 |
+
},
|
2728 |
+
{
|
2729 |
+
"epoch": 2.28,
|
2730 |
+
"learning_rate": 5.026178010471204e-06,
|
2731 |
+
"loss": 0.5632,
|
2732 |
+
"step": 454
|
2733 |
+
},
|
2734 |
+
{
|
2735 |
+
"epoch": 2.28,
|
2736 |
+
"learning_rate": 4.991273996509599e-06,
|
2737 |
+
"loss": 0.5593,
|
2738 |
+
"step": 455
|
2739 |
+
},
|
2740 |
+
{
|
2741 |
+
"epoch": 2.29,
|
2742 |
+
"learning_rate": 4.956369982547993e-06,
|
2743 |
+
"loss": 0.5788,
|
2744 |
+
"step": 456
|
2745 |
+
},
|
2746 |
+
{
|
2747 |
+
"epoch": 2.29,
|
2748 |
+
"learning_rate": 4.921465968586388e-06,
|
2749 |
+
"loss": 0.5673,
|
2750 |
+
"step": 457
|
2751 |
+
},
|
2752 |
+
{
|
2753 |
+
"epoch": 2.3,
|
2754 |
+
"learning_rate": 4.886561954624782e-06,
|
2755 |
+
"loss": 0.5817,
|
2756 |
+
"step": 458
|
2757 |
+
},
|
2758 |
+
{
|
2759 |
+
"epoch": 2.3,
|
2760 |
+
"learning_rate": 4.851657940663177e-06,
|
2761 |
+
"loss": 0.6004,
|
2762 |
+
"step": 459
|
2763 |
+
},
|
2764 |
+
{
|
2765 |
+
"epoch": 2.31,
|
2766 |
+
"learning_rate": 4.816753926701571e-06,
|
2767 |
+
"loss": 0.5476,
|
2768 |
+
"step": 460
|
2769 |
+
},
|
2770 |
+
{
|
2771 |
+
"epoch": 2.31,
|
2772 |
+
"learning_rate": 4.781849912739966e-06,
|
2773 |
+
"loss": 0.5845,
|
2774 |
+
"step": 461
|
2775 |
+
},
|
2776 |
+
{
|
2777 |
+
"epoch": 2.32,
|
2778 |
+
"learning_rate": 4.74694589877836e-06,
|
2779 |
+
"loss": 0.568,
|
2780 |
+
"step": 462
|
2781 |
+
},
|
2782 |
+
{
|
2783 |
+
"epoch": 2.32,
|
2784 |
+
"learning_rate": 4.712041884816754e-06,
|
2785 |
+
"loss": 0.5712,
|
2786 |
+
"step": 463
|
2787 |
+
},
|
2788 |
+
{
|
2789 |
+
"epoch": 2.33,
|
2790 |
+
"learning_rate": 4.677137870855148e-06,
|
2791 |
+
"loss": 0.583,
|
2792 |
+
"step": 464
|
2793 |
+
},
|
2794 |
+
{
|
2795 |
+
"epoch": 2.33,
|
2796 |
+
"learning_rate": 4.642233856893543e-06,
|
2797 |
+
"loss": 0.5612,
|
2798 |
+
"step": 465
|
2799 |
+
},
|
2800 |
+
{
|
2801 |
+
"epoch": 2.34,
|
2802 |
+
"learning_rate": 4.607329842931937e-06,
|
2803 |
+
"loss": 0.5544,
|
2804 |
+
"step": 466
|
2805 |
+
},
|
2806 |
+
{
|
2807 |
+
"epoch": 2.34,
|
2808 |
+
"learning_rate": 4.572425828970332e-06,
|
2809 |
+
"loss": 0.5843,
|
2810 |
+
"step": 467
|
2811 |
+
},
|
2812 |
+
{
|
2813 |
+
"epoch": 2.35,
|
2814 |
+
"learning_rate": 4.537521815008726e-06,
|
2815 |
+
"loss": 0.5771,
|
2816 |
+
"step": 468
|
2817 |
+
},
|
2818 |
+
{
|
2819 |
+
"epoch": 2.35,
|
2820 |
+
"learning_rate": 4.502617801047121e-06,
|
2821 |
+
"loss": 0.5871,
|
2822 |
+
"step": 469
|
2823 |
+
},
|
2824 |
+
{
|
2825 |
+
"epoch": 2.36,
|
2826 |
+
"learning_rate": 4.467713787085515e-06,
|
2827 |
+
"loss": 0.5876,
|
2828 |
+
"step": 470
|
2829 |
+
},
|
2830 |
+
{
|
2831 |
+
"epoch": 2.36,
|
2832 |
+
"learning_rate": 4.43280977312391e-06,
|
2833 |
+
"loss": 0.5789,
|
2834 |
+
"step": 471
|
2835 |
+
},
|
2836 |
+
{
|
2837 |
+
"epoch": 2.37,
|
2838 |
+
"learning_rate": 4.397905759162304e-06,
|
2839 |
+
"loss": 0.5898,
|
2840 |
+
"step": 472
|
2841 |
+
},
|
2842 |
+
{
|
2843 |
+
"epoch": 2.37,
|
2844 |
+
"learning_rate": 4.363001745200699e-06,
|
2845 |
+
"loss": 0.5548,
|
2846 |
+
"step": 473
|
2847 |
+
},
|
2848 |
+
{
|
2849 |
+
"epoch": 2.38,
|
2850 |
+
"learning_rate": 4.3280977312390925e-06,
|
2851 |
+
"loss": 0.5752,
|
2852 |
+
"step": 474
|
2853 |
+
},
|
2854 |
+
{
|
2855 |
+
"epoch": 2.38,
|
2856 |
+
"learning_rate": 4.293193717277487e-06,
|
2857 |
+
"loss": 0.5549,
|
2858 |
+
"step": 475
|
2859 |
+
},
|
2860 |
+
{
|
2861 |
+
"epoch": 2.39,
|
2862 |
+
"learning_rate": 4.2582897033158814e-06,
|
2863 |
+
"loss": 0.5744,
|
2864 |
+
"step": 476
|
2865 |
+
},
|
2866 |
+
{
|
2867 |
+
"epoch": 2.39,
|
2868 |
+
"learning_rate": 4.223385689354276e-06,
|
2869 |
+
"loss": 0.5949,
|
2870 |
+
"step": 477
|
2871 |
+
},
|
2872 |
+
{
|
2873 |
+
"epoch": 2.4,
|
2874 |
+
"learning_rate": 4.18848167539267e-06,
|
2875 |
+
"loss": 0.5817,
|
2876 |
+
"step": 478
|
2877 |
+
},
|
2878 |
+
{
|
2879 |
+
"epoch": 2.4,
|
2880 |
+
"learning_rate": 4.153577661431065e-06,
|
2881 |
+
"loss": 0.5775,
|
2882 |
+
"step": 479
|
2883 |
+
},
|
2884 |
+
{
|
2885 |
+
"epoch": 2.41,
|
2886 |
+
"learning_rate": 4.118673647469459e-06,
|
2887 |
+
"loss": 0.5728,
|
2888 |
+
"step": 480
|
2889 |
+
},
|
2890 |
+
{
|
2891 |
+
"epoch": 2.41,
|
2892 |
+
"learning_rate": 4.083769633507854e-06,
|
2893 |
+
"loss": 0.5971,
|
2894 |
+
"step": 481
|
2895 |
+
},
|
2896 |
+
{
|
2897 |
+
"epoch": 2.42,
|
2898 |
+
"learning_rate": 4.048865619546248e-06,
|
2899 |
+
"loss": 0.5743,
|
2900 |
+
"step": 482
|
2901 |
+
},
|
2902 |
+
{
|
2903 |
+
"epoch": 2.42,
|
2904 |
+
"learning_rate": 4.013961605584643e-06,
|
2905 |
+
"loss": 0.5767,
|
2906 |
+
"step": 483
|
2907 |
+
},
|
2908 |
+
{
|
2909 |
+
"epoch": 2.43,
|
2910 |
+
"learning_rate": 3.9790575916230365e-06,
|
2911 |
+
"loss": 0.5834,
|
2912 |
+
"step": 484
|
2913 |
+
},
|
2914 |
+
{
|
2915 |
+
"epoch": 2.43,
|
2916 |
+
"learning_rate": 3.944153577661432e-06,
|
2917 |
+
"loss": 0.5666,
|
2918 |
+
"step": 485
|
2919 |
+
},
|
2920 |
+
{
|
2921 |
+
"epoch": 2.44,
|
2922 |
+
"learning_rate": 3.9092495636998255e-06,
|
2923 |
+
"loss": 0.5744,
|
2924 |
+
"step": 486
|
2925 |
+
},
|
2926 |
+
{
|
2927 |
+
"epoch": 2.44,
|
2928 |
+
"learning_rate": 3.874345549738221e-06,
|
2929 |
+
"loss": 0.5704,
|
2930 |
+
"step": 487
|
2931 |
+
},
|
2932 |
+
{
|
2933 |
+
"epoch": 2.45,
|
2934 |
+
"learning_rate": 3.8394415357766145e-06,
|
2935 |
+
"loss": 0.5805,
|
2936 |
+
"step": 488
|
2937 |
+
},
|
2938 |
+
{
|
2939 |
+
"epoch": 2.45,
|
2940 |
+
"learning_rate": 3.804537521815009e-06,
|
2941 |
+
"loss": 0.5494,
|
2942 |
+
"step": 489
|
2943 |
+
},
|
2944 |
+
{
|
2945 |
+
"epoch": 2.46,
|
2946 |
+
"learning_rate": 3.7696335078534035e-06,
|
2947 |
+
"loss": 0.5564,
|
2948 |
+
"step": 490
|
2949 |
+
},
|
2950 |
+
{
|
2951 |
+
"epoch": 2.46,
|
2952 |
+
"learning_rate": 3.7347294938917975e-06,
|
2953 |
+
"loss": 0.5449,
|
2954 |
+
"step": 491
|
2955 |
+
},
|
2956 |
+
{
|
2957 |
+
"epoch": 2.47,
|
2958 |
+
"learning_rate": 3.6998254799301924e-06,
|
2959 |
+
"loss": 0.5635,
|
2960 |
+
"step": 492
|
2961 |
+
},
|
2962 |
+
{
|
2963 |
+
"epoch": 2.47,
|
2964 |
+
"learning_rate": 3.6649214659685865e-06,
|
2965 |
+
"loss": 0.567,
|
2966 |
+
"step": 493
|
2967 |
+
},
|
2968 |
+
{
|
2969 |
+
"epoch": 2.48,
|
2970 |
+
"learning_rate": 3.630017452006981e-06,
|
2971 |
+
"loss": 0.586,
|
2972 |
+
"step": 494
|
2973 |
+
},
|
2974 |
+
{
|
2975 |
+
"epoch": 2.48,
|
2976 |
+
"learning_rate": 3.5951134380453755e-06,
|
2977 |
+
"loss": 0.569,
|
2978 |
+
"step": 495
|
2979 |
+
},
|
2980 |
+
{
|
2981 |
+
"epoch": 2.49,
|
2982 |
+
"learning_rate": 3.56020942408377e-06,
|
2983 |
+
"loss": 0.5607,
|
2984 |
+
"step": 496
|
2985 |
+
},
|
2986 |
+
{
|
2987 |
+
"epoch": 2.49,
|
2988 |
+
"learning_rate": 3.5253054101221645e-06,
|
2989 |
+
"loss": 0.5737,
|
2990 |
+
"step": 497
|
2991 |
+
},
|
2992 |
+
{
|
2993 |
+
"epoch": 2.5,
|
2994 |
+
"learning_rate": 3.4904013961605585e-06,
|
2995 |
+
"loss": 0.5813,
|
2996 |
+
"step": 498
|
2997 |
+
},
|
2998 |
+
{
|
2999 |
+
"epoch": 2.5,
|
3000 |
+
"learning_rate": 3.455497382198953e-06,
|
3001 |
+
"loss": 0.5906,
|
3002 |
+
"step": 499
|
3003 |
+
},
|
3004 |
+
{
|
3005 |
+
"epoch": 2.51,
|
3006 |
+
"learning_rate": 3.4205933682373475e-06,
|
3007 |
+
"loss": 0.5948,
|
3008 |
+
"step": 500
|
3009 |
+
},
|
3010 |
+
{
|
3011 |
+
"epoch": 2.51,
|
3012 |
+
"learning_rate": 3.385689354275742e-06,
|
3013 |
+
"loss": 0.572,
|
3014 |
+
"step": 501
|
3015 |
+
},
|
3016 |
+
{
|
3017 |
+
"epoch": 2.52,
|
3018 |
+
"learning_rate": 3.3507853403141365e-06,
|
3019 |
+
"loss": 0.5577,
|
3020 |
+
"step": 502
|
3021 |
+
},
|
3022 |
+
{
|
3023 |
+
"epoch": 2.52,
|
3024 |
+
"learning_rate": 3.315881326352531e-06,
|
3025 |
+
"loss": 0.5611,
|
3026 |
+
"step": 503
|
3027 |
+
},
|
3028 |
+
{
|
3029 |
+
"epoch": 2.53,
|
3030 |
+
"learning_rate": 3.280977312390925e-06,
|
3031 |
+
"loss": 0.5753,
|
3032 |
+
"step": 504
|
3033 |
+
},
|
3034 |
+
{
|
3035 |
+
"epoch": 2.53,
|
3036 |
+
"learning_rate": 3.2460732984293196e-06,
|
3037 |
+
"loss": 0.5748,
|
3038 |
+
"step": 505
|
3039 |
+
},
|
3040 |
+
{
|
3041 |
+
"epoch": 2.54,
|
3042 |
+
"learning_rate": 3.211169284467714e-06,
|
3043 |
+
"loss": 0.556,
|
3044 |
+
"step": 506
|
3045 |
+
},
|
3046 |
+
{
|
3047 |
+
"epoch": 2.54,
|
3048 |
+
"learning_rate": 3.1762652705061085e-06,
|
3049 |
+
"loss": 0.5784,
|
3050 |
+
"step": 507
|
3051 |
+
},
|
3052 |
+
{
|
3053 |
+
"epoch": 2.55,
|
3054 |
+
"learning_rate": 3.141361256544503e-06,
|
3055 |
+
"loss": 0.5715,
|
3056 |
+
"step": 508
|
3057 |
+
},
|
3058 |
+
{
|
3059 |
+
"epoch": 2.55,
|
3060 |
+
"learning_rate": 3.106457242582897e-06,
|
3061 |
+
"loss": 0.5888,
|
3062 |
+
"step": 509
|
3063 |
+
},
|
3064 |
+
{
|
3065 |
+
"epoch": 2.56,
|
3066 |
+
"learning_rate": 3.071553228621292e-06,
|
3067 |
+
"loss": 0.5729,
|
3068 |
+
"step": 510
|
3069 |
+
},
|
3070 |
+
{
|
3071 |
+
"epoch": 2.56,
|
3072 |
+
"learning_rate": 3.036649214659686e-06,
|
3073 |
+
"loss": 0.5759,
|
3074 |
+
"step": 511
|
3075 |
+
},
|
3076 |
+
{
|
3077 |
+
"epoch": 2.57,
|
3078 |
+
"learning_rate": 3.0017452006980806e-06,
|
3079 |
+
"loss": 0.5763,
|
3080 |
+
"step": 512
|
3081 |
+
},
|
3082 |
+
{
|
3083 |
+
"epoch": 2.57,
|
3084 |
+
"learning_rate": 2.966841186736475e-06,
|
3085 |
+
"loss": 0.5574,
|
3086 |
+
"step": 513
|
3087 |
+
},
|
3088 |
+
{
|
3089 |
+
"epoch": 2.58,
|
3090 |
+
"learning_rate": 2.931937172774869e-06,
|
3091 |
+
"loss": 0.5927,
|
3092 |
+
"step": 514
|
3093 |
+
},
|
3094 |
+
{
|
3095 |
+
"epoch": 2.58,
|
3096 |
+
"learning_rate": 2.897033158813264e-06,
|
3097 |
+
"loss": 0.5717,
|
3098 |
+
"step": 515
|
3099 |
+
},
|
3100 |
+
{
|
3101 |
+
"epoch": 2.59,
|
3102 |
+
"learning_rate": 2.862129144851658e-06,
|
3103 |
+
"loss": 0.5553,
|
3104 |
+
"step": 516
|
3105 |
+
},
|
3106 |
+
{
|
3107 |
+
"epoch": 2.59,
|
3108 |
+
"learning_rate": 2.8272251308900526e-06,
|
3109 |
+
"loss": 0.5712,
|
3110 |
+
"step": 517
|
3111 |
+
},
|
3112 |
+
{
|
3113 |
+
"epoch": 2.6,
|
3114 |
+
"learning_rate": 2.792321116928447e-06,
|
3115 |
+
"loss": 0.5931,
|
3116 |
+
"step": 518
|
3117 |
+
},
|
3118 |
+
{
|
3119 |
+
"epoch": 2.6,
|
3120 |
+
"learning_rate": 2.757417102966841e-06,
|
3121 |
+
"loss": 0.5523,
|
3122 |
+
"step": 519
|
3123 |
+
},
|
3124 |
+
{
|
3125 |
+
"epoch": 2.61,
|
3126 |
+
"learning_rate": 2.722513089005236e-06,
|
3127 |
+
"loss": 0.5782,
|
3128 |
+
"step": 520
|
3129 |
+
},
|
3130 |
+
{
|
3131 |
+
"epoch": 2.61,
|
3132 |
+
"learning_rate": 2.68760907504363e-06,
|
3133 |
+
"loss": 0.5701,
|
3134 |
+
"step": 521
|
3135 |
+
},
|
3136 |
+
{
|
3137 |
+
"epoch": 2.62,
|
3138 |
+
"learning_rate": 2.652705061082025e-06,
|
3139 |
+
"loss": 0.5819,
|
3140 |
+
"step": 522
|
3141 |
+
},
|
3142 |
+
{
|
3143 |
+
"epoch": 2.62,
|
3144 |
+
"learning_rate": 2.617801047120419e-06,
|
3145 |
+
"loss": 0.583,
|
3146 |
+
"step": 523
|
3147 |
+
},
|
3148 |
+
{
|
3149 |
+
"epoch": 2.63,
|
3150 |
+
"learning_rate": 2.582897033158813e-06,
|
3151 |
+
"loss": 0.5425,
|
3152 |
+
"step": 524
|
3153 |
+
},
|
3154 |
+
{
|
3155 |
+
"epoch": 2.63,
|
3156 |
+
"learning_rate": 2.547993019197208e-06,
|
3157 |
+
"loss": 0.5527,
|
3158 |
+
"step": 525
|
3159 |
+
},
|
3160 |
+
{
|
3161 |
+
"epoch": 2.64,
|
3162 |
+
"learning_rate": 2.513089005235602e-06,
|
3163 |
+
"loss": 0.5525,
|
3164 |
+
"step": 526
|
3165 |
+
},
|
3166 |
+
{
|
3167 |
+
"epoch": 2.64,
|
3168 |
+
"learning_rate": 2.4781849912739967e-06,
|
3169 |
+
"loss": 0.5654,
|
3170 |
+
"step": 527
|
3171 |
+
},
|
3172 |
+
{
|
3173 |
+
"epoch": 2.65,
|
3174 |
+
"learning_rate": 2.443280977312391e-06,
|
3175 |
+
"loss": 0.5693,
|
3176 |
+
"step": 528
|
3177 |
+
},
|
3178 |
+
{
|
3179 |
+
"epoch": 2.65,
|
3180 |
+
"learning_rate": 2.4083769633507856e-06,
|
3181 |
+
"loss": 0.5796,
|
3182 |
+
"step": 529
|
3183 |
+
},
|
3184 |
+
{
|
3185 |
+
"epoch": 2.66,
|
3186 |
+
"learning_rate": 2.37347294938918e-06,
|
3187 |
+
"loss": 0.5918,
|
3188 |
+
"step": 530
|
3189 |
+
},
|
3190 |
+
{
|
3191 |
+
"epoch": 2.66,
|
3192 |
+
"learning_rate": 2.338568935427574e-06,
|
3193 |
+
"loss": 0.5669,
|
3194 |
+
"step": 531
|
3195 |
+
},
|
3196 |
+
{
|
3197 |
+
"epoch": 2.67,
|
3198 |
+
"learning_rate": 2.3036649214659687e-06,
|
3199 |
+
"loss": 0.5651,
|
3200 |
+
"step": 532
|
3201 |
+
},
|
3202 |
+
{
|
3203 |
+
"epoch": 2.67,
|
3204 |
+
"learning_rate": 2.268760907504363e-06,
|
3205 |
+
"loss": 0.5861,
|
3206 |
+
"step": 533
|
3207 |
+
},
|
3208 |
+
{
|
3209 |
+
"epoch": 2.68,
|
3210 |
+
"learning_rate": 2.2338568935427577e-06,
|
3211 |
+
"loss": 0.5591,
|
3212 |
+
"step": 534
|
3213 |
+
},
|
3214 |
+
{
|
3215 |
+
"epoch": 2.68,
|
3216 |
+
"learning_rate": 2.198952879581152e-06,
|
3217 |
+
"loss": 0.5594,
|
3218 |
+
"step": 535
|
3219 |
+
},
|
3220 |
+
{
|
3221 |
+
"epoch": 2.69,
|
3222 |
+
"learning_rate": 2.1640488656195462e-06,
|
3223 |
+
"loss": 0.5816,
|
3224 |
+
"step": 536
|
3225 |
+
},
|
3226 |
+
{
|
3227 |
+
"epoch": 2.69,
|
3228 |
+
"learning_rate": 2.1291448516579407e-06,
|
3229 |
+
"loss": 0.5988,
|
3230 |
+
"step": 537
|
3231 |
+
},
|
3232 |
+
{
|
3233 |
+
"epoch": 2.7,
|
3234 |
+
"learning_rate": 2.094240837696335e-06,
|
3235 |
+
"loss": 0.5642,
|
3236 |
+
"step": 538
|
3237 |
+
},
|
3238 |
+
{
|
3239 |
+
"epoch": 2.7,
|
3240 |
+
"learning_rate": 2.0593368237347297e-06,
|
3241 |
+
"loss": 0.579,
|
3242 |
+
"step": 539
|
3243 |
+
},
|
3244 |
+
{
|
3245 |
+
"epoch": 2.71,
|
3246 |
+
"learning_rate": 2.024432809773124e-06,
|
3247 |
+
"loss": 0.5742,
|
3248 |
+
"step": 540
|
3249 |
+
},
|
3250 |
+
{
|
3251 |
+
"epoch": 2.71,
|
3252 |
+
"learning_rate": 1.9895287958115183e-06,
|
3253 |
+
"loss": 0.5604,
|
3254 |
+
"step": 541
|
3255 |
+
},
|
3256 |
+
{
|
3257 |
+
"epoch": 2.72,
|
3258 |
+
"learning_rate": 1.9546247818499127e-06,
|
3259 |
+
"loss": 0.5751,
|
3260 |
+
"step": 542
|
3261 |
+
},
|
3262 |
+
{
|
3263 |
+
"epoch": 2.72,
|
3264 |
+
"learning_rate": 1.9197207678883072e-06,
|
3265 |
+
"loss": 0.5675,
|
3266 |
+
"step": 543
|
3267 |
+
},
|
3268 |
+
{
|
3269 |
+
"epoch": 2.73,
|
3270 |
+
"learning_rate": 1.8848167539267017e-06,
|
3271 |
+
"loss": 0.5614,
|
3272 |
+
"step": 544
|
3273 |
+
},
|
3274 |
+
{
|
3275 |
+
"epoch": 2.73,
|
3276 |
+
"learning_rate": 1.8499127399650962e-06,
|
3277 |
+
"loss": 0.5637,
|
3278 |
+
"step": 545
|
3279 |
+
},
|
3280 |
+
{
|
3281 |
+
"epoch": 2.74,
|
3282 |
+
"learning_rate": 1.8150087260034905e-06,
|
3283 |
+
"loss": 0.5702,
|
3284 |
+
"step": 546
|
3285 |
+
},
|
3286 |
+
{
|
3287 |
+
"epoch": 2.74,
|
3288 |
+
"learning_rate": 1.780104712041885e-06,
|
3289 |
+
"loss": 0.5569,
|
3290 |
+
"step": 547
|
3291 |
+
},
|
3292 |
+
{
|
3293 |
+
"epoch": 2.75,
|
3294 |
+
"learning_rate": 1.7452006980802793e-06,
|
3295 |
+
"loss": 0.5658,
|
3296 |
+
"step": 548
|
3297 |
+
},
|
3298 |
+
{
|
3299 |
+
"epoch": 2.75,
|
3300 |
+
"learning_rate": 1.7102966841186738e-06,
|
3301 |
+
"loss": 0.5593,
|
3302 |
+
"step": 549
|
3303 |
+
},
|
3304 |
+
{
|
3305 |
+
"epoch": 2.76,
|
3306 |
+
"learning_rate": 1.6753926701570683e-06,
|
3307 |
+
"loss": 0.5683,
|
3308 |
+
"step": 550
|
3309 |
+
},
|
3310 |
+
{
|
3311 |
+
"epoch": 2.76,
|
3312 |
+
"learning_rate": 1.6404886561954625e-06,
|
3313 |
+
"loss": 0.5894,
|
3314 |
+
"step": 551
|
3315 |
+
},
|
3316 |
+
{
|
3317 |
+
"epoch": 2.77,
|
3318 |
+
"learning_rate": 1.605584642233857e-06,
|
3319 |
+
"loss": 0.5648,
|
3320 |
+
"step": 552
|
3321 |
+
},
|
3322 |
+
{
|
3323 |
+
"epoch": 2.77,
|
3324 |
+
"learning_rate": 1.5706806282722515e-06,
|
3325 |
+
"loss": 0.5686,
|
3326 |
+
"step": 553
|
3327 |
+
},
|
3328 |
+
{
|
3329 |
+
"epoch": 2.78,
|
3330 |
+
"learning_rate": 1.535776614310646e-06,
|
3331 |
+
"loss": 0.5577,
|
3332 |
+
"step": 554
|
3333 |
+
},
|
3334 |
+
{
|
3335 |
+
"epoch": 2.78,
|
3336 |
+
"learning_rate": 1.5008726003490403e-06,
|
3337 |
+
"loss": 0.6011,
|
3338 |
+
"step": 555
|
3339 |
+
},
|
3340 |
+
{
|
3341 |
+
"epoch": 2.79,
|
3342 |
+
"learning_rate": 1.4659685863874346e-06,
|
3343 |
+
"loss": 0.5758,
|
3344 |
+
"step": 556
|
3345 |
+
},
|
3346 |
+
{
|
3347 |
+
"epoch": 2.79,
|
3348 |
+
"learning_rate": 1.431064572425829e-06,
|
3349 |
+
"loss": 0.5687,
|
3350 |
+
"step": 557
|
3351 |
+
},
|
3352 |
+
{
|
3353 |
+
"epoch": 2.8,
|
3354 |
+
"learning_rate": 1.3961605584642235e-06,
|
3355 |
+
"loss": 0.5788,
|
3356 |
+
"step": 558
|
3357 |
+
},
|
3358 |
+
{
|
3359 |
+
"epoch": 2.8,
|
3360 |
+
"learning_rate": 1.361256544502618e-06,
|
3361 |
+
"loss": 0.5724,
|
3362 |
+
"step": 559
|
3363 |
+
},
|
3364 |
+
{
|
3365 |
+
"epoch": 2.81,
|
3366 |
+
"learning_rate": 1.3263525305410125e-06,
|
3367 |
+
"loss": 0.5622,
|
3368 |
+
"step": 560
|
3369 |
+
},
|
3370 |
+
{
|
3371 |
+
"epoch": 2.81,
|
3372 |
+
"learning_rate": 1.2914485165794066e-06,
|
3373 |
+
"loss": 0.5632,
|
3374 |
+
"step": 561
|
3375 |
+
},
|
3376 |
+
{
|
3377 |
+
"epoch": 2.82,
|
3378 |
+
"learning_rate": 1.256544502617801e-06,
|
3379 |
+
"loss": 0.5673,
|
3380 |
+
"step": 562
|
3381 |
+
},
|
3382 |
+
{
|
3383 |
+
"epoch": 2.82,
|
3384 |
+
"learning_rate": 1.2216404886561956e-06,
|
3385 |
+
"loss": 0.5551,
|
3386 |
+
"step": 563
|
3387 |
+
},
|
3388 |
+
{
|
3389 |
+
"epoch": 2.83,
|
3390 |
+
"learning_rate": 1.18673647469459e-06,
|
3391 |
+
"loss": 0.5643,
|
3392 |
+
"step": 564
|
3393 |
+
},
|
3394 |
+
{
|
3395 |
+
"epoch": 2.83,
|
3396 |
+
"learning_rate": 1.1518324607329843e-06,
|
3397 |
+
"loss": 0.6011,
|
3398 |
+
"step": 565
|
3399 |
+
},
|
3400 |
+
{
|
3401 |
+
"epoch": 2.84,
|
3402 |
+
"learning_rate": 1.1169284467713788e-06,
|
3403 |
+
"loss": 0.572,
|
3404 |
+
"step": 566
|
3405 |
+
},
|
3406 |
+
{
|
3407 |
+
"epoch": 2.84,
|
3408 |
+
"learning_rate": 1.0820244328097731e-06,
|
3409 |
+
"loss": 0.5787,
|
3410 |
+
"step": 567
|
3411 |
+
},
|
3412 |
+
{
|
3413 |
+
"epoch": 2.85,
|
3414 |
+
"learning_rate": 1.0471204188481676e-06,
|
3415 |
+
"loss": 0.5684,
|
3416 |
+
"step": 568
|
3417 |
+
},
|
3418 |
+
{
|
3419 |
+
"epoch": 2.85,
|
3420 |
+
"learning_rate": 1.012216404886562e-06,
|
3421 |
+
"loss": 0.5653,
|
3422 |
+
"step": 569
|
3423 |
+
},
|
3424 |
+
{
|
3425 |
+
"epoch": 2.86,
|
3426 |
+
"learning_rate": 9.773123909249564e-07,
|
3427 |
+
"loss": 0.5756,
|
3428 |
+
"step": 570
|
3429 |
+
},
|
3430 |
+
{
|
3431 |
+
"epoch": 2.86,
|
3432 |
+
"learning_rate": 9.424083769633509e-07,
|
3433 |
+
"loss": 0.5688,
|
3434 |
+
"step": 571
|
3435 |
+
},
|
3436 |
+
{
|
3437 |
+
"epoch": 2.87,
|
3438 |
+
"learning_rate": 9.075043630017452e-07,
|
3439 |
+
"loss": 0.5673,
|
3440 |
+
"step": 572
|
3441 |
+
},
|
3442 |
+
{
|
3443 |
+
"epoch": 2.87,
|
3444 |
+
"learning_rate": 8.726003490401396e-07,
|
3445 |
+
"loss": 0.5678,
|
3446 |
+
"step": 573
|
3447 |
+
},
|
3448 |
+
{
|
3449 |
+
"epoch": 2.88,
|
3450 |
+
"learning_rate": 8.376963350785341e-07,
|
3451 |
+
"loss": 0.556,
|
3452 |
+
"step": 574
|
3453 |
+
},
|
3454 |
+
{
|
3455 |
+
"epoch": 2.88,
|
3456 |
+
"learning_rate": 8.027923211169285e-07,
|
3457 |
+
"loss": 0.5686,
|
3458 |
+
"step": 575
|
3459 |
+
},
|
3460 |
+
{
|
3461 |
+
"epoch": 2.89,
|
3462 |
+
"learning_rate": 7.67888307155323e-07,
|
3463 |
+
"loss": 0.5588,
|
3464 |
+
"step": 576
|
3465 |
+
},
|
3466 |
+
{
|
3467 |
+
"epoch": 2.89,
|
3468 |
+
"learning_rate": 7.329842931937173e-07,
|
3469 |
+
"loss": 0.5581,
|
3470 |
+
"step": 577
|
3471 |
+
},
|
3472 |
+
{
|
3473 |
+
"epoch": 2.9,
|
3474 |
+
"learning_rate": 6.980802792321118e-07,
|
3475 |
+
"loss": 0.5607,
|
3476 |
+
"step": 578
|
3477 |
+
},
|
3478 |
+
{
|
3479 |
+
"epoch": 2.9,
|
3480 |
+
"learning_rate": 6.631762652705063e-07,
|
3481 |
+
"loss": 0.5529,
|
3482 |
+
"step": 579
|
3483 |
+
},
|
3484 |
+
{
|
3485 |
+
"epoch": 2.91,
|
3486 |
+
"learning_rate": 6.282722513089005e-07,
|
3487 |
+
"loss": 0.5775,
|
3488 |
+
"step": 580
|
3489 |
+
},
|
3490 |
+
{
|
3491 |
+
"epoch": 2.91,
|
3492 |
+
"learning_rate": 5.93368237347295e-07,
|
3493 |
+
"loss": 0.5794,
|
3494 |
+
"step": 581
|
3495 |
+
},
|
3496 |
+
{
|
3497 |
+
"epoch": 2.92,
|
3498 |
+
"learning_rate": 5.584642233856894e-07,
|
3499 |
+
"loss": 0.5803,
|
3500 |
+
"step": 582
|
3501 |
+
},
|
3502 |
+
{
|
3503 |
+
"epoch": 2.92,
|
3504 |
+
"learning_rate": 5.235602094240838e-07,
|
3505 |
+
"loss": 0.5547,
|
3506 |
+
"step": 583
|
3507 |
+
},
|
3508 |
+
{
|
3509 |
+
"epoch": 2.93,
|
3510 |
+
"learning_rate": 4.886561954624782e-07,
|
3511 |
+
"loss": 0.5578,
|
3512 |
+
"step": 584
|
3513 |
+
},
|
3514 |
+
{
|
3515 |
+
"epoch": 2.93,
|
3516 |
+
"learning_rate": 4.537521815008726e-07,
|
3517 |
+
"loss": 0.5787,
|
3518 |
+
"step": 585
|
3519 |
+
},
|
3520 |
+
{
|
3521 |
+
"epoch": 2.94,
|
3522 |
+
"learning_rate": 4.1884816753926706e-07,
|
3523 |
+
"loss": 0.5916,
|
3524 |
+
"step": 586
|
3525 |
+
},
|
3526 |
+
{
|
3527 |
+
"epoch": 2.94,
|
3528 |
+
"learning_rate": 3.839441535776615e-07,
|
3529 |
+
"loss": 0.571,
|
3530 |
+
"step": 587
|
3531 |
+
},
|
3532 |
+
{
|
3533 |
+
"epoch": 2.95,
|
3534 |
+
"learning_rate": 3.490401396160559e-07,
|
3535 |
+
"loss": 0.5364,
|
3536 |
+
"step": 588
|
3537 |
+
},
|
3538 |
+
{
|
3539 |
+
"epoch": 2.95,
|
3540 |
+
"learning_rate": 3.1413612565445027e-07,
|
3541 |
+
"loss": 0.5824,
|
3542 |
+
"step": 589
|
3543 |
+
},
|
3544 |
+
{
|
3545 |
+
"epoch": 2.96,
|
3546 |
+
"learning_rate": 2.792321116928447e-07,
|
3547 |
+
"loss": 0.5747,
|
3548 |
+
"step": 590
|
3549 |
+
},
|
3550 |
+
{
|
3551 |
+
"epoch": 2.96,
|
3552 |
+
"learning_rate": 2.443280977312391e-07,
|
3553 |
+
"loss": 0.5588,
|
3554 |
+
"step": 591
|
3555 |
+
},
|
3556 |
+
{
|
3557 |
+
"epoch": 2.97,
|
3558 |
+
"learning_rate": 2.0942408376963353e-07,
|
3559 |
+
"loss": 0.5661,
|
3560 |
+
"step": 592
|
3561 |
+
},
|
3562 |
+
{
|
3563 |
+
"epoch": 2.97,
|
3564 |
+
"learning_rate": 1.7452006980802794e-07,
|
3565 |
+
"loss": 0.5612,
|
3566 |
+
"step": 593
|
3567 |
+
},
|
3568 |
+
{
|
3569 |
+
"epoch": 2.98,
|
3570 |
+
"learning_rate": 1.3961605584642235e-07,
|
3571 |
+
"loss": 0.5759,
|
3572 |
+
"step": 594
|
3573 |
+
},
|
3574 |
+
{
|
3575 |
+
"epoch": 2.98,
|
3576 |
+
"learning_rate": 1.0471204188481677e-07,
|
3577 |
+
"loss": 0.5689,
|
3578 |
+
"step": 595
|
3579 |
+
},
|
3580 |
+
{
|
3581 |
+
"epoch": 2.99,
|
3582 |
+
"learning_rate": 6.980802792321118e-08,
|
3583 |
+
"loss": 0.5575,
|
3584 |
+
"step": 596
|
3585 |
+
},
|
3586 |
+
{
|
3587 |
+
"epoch": 2.99,
|
3588 |
+
"learning_rate": 3.490401396160559e-08,
|
3589 |
+
"loss": 0.5573,
|
3590 |
+
"step": 597
|
3591 |
+
}
|
3592 |
+
],
|
3593 |
+
"max_steps": 597,
|
3594 |
+
"num_train_epochs": 3,
|
3595 |
+
"total_flos": 826828684001280.0,
|
3596 |
+
"trial_name": null,
|
3597 |
+
"trial_params": null
|
3598 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:15c7f6bae13d726117b591744d6f47b6e671352bdcb4dc9c6fcfa9aa75727c90
|
3 |
+
size 6331
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,578 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dicts.append(torch.load(f, map_location=device))
|
147 |
+
|
148 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
149 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
150 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
151 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
152 |
+
|
153 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
154 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
155 |
+
# use the max of the partition_count to get the dp world_size.
|
156 |
+
|
157 |
+
if type(world_size) is list:
|
158 |
+
world_size = max(world_size)
|
159 |
+
|
160 |
+
if world_size != total_files:
|
161 |
+
raise ValueError(
|
162 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
163 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
164 |
+
)
|
165 |
+
|
166 |
+
# the groups are named differently in each stage
|
167 |
+
if zero_stage <= 2:
|
168 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
169 |
+
elif zero_stage == 3:
|
170 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
171 |
+
else:
|
172 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
173 |
+
|
174 |
+
if zero_stage <= 2:
|
175 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
176 |
+
elif zero_stage == 3:
|
177 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
178 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
179 |
+
#
|
180 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
181 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
182 |
+
|
183 |
+
fp32_flat_groups = [
|
184 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
185 |
+
]
|
186 |
+
|
187 |
+
return zero_stage, world_size, fp32_flat_groups
|
188 |
+
|
189 |
+
|
190 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
191 |
+
"""
|
192 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
193 |
+
|
194 |
+
Args:
|
195 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
196 |
+
|
197 |
+
"""
|
198 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
199 |
+
|
200 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
201 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
202 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
203 |
+
|
204 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
205 |
+
|
206 |
+
zero_model_states = parse_model_states(model_files)
|
207 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
208 |
+
|
209 |
+
if zero_stage <= 2:
|
210 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
211 |
+
elif zero_stage == 3:
|
212 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
213 |
+
|
214 |
+
|
215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
217 |
+
return
|
218 |
+
|
219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
221 |
+
|
222 |
+
if debug:
|
223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
225 |
+
|
226 |
+
wanted_params = len(frozen_param_shapes)
|
227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
231 |
+
|
232 |
+
total_params = 0
|
233 |
+
total_numel = 0
|
234 |
+
for name, shape in frozen_param_shapes.items():
|
235 |
+
total_params += 1
|
236 |
+
unpartitioned_numel = shape.numel()
|
237 |
+
total_numel += unpartitioned_numel
|
238 |
+
|
239 |
+
state_dict[name] = frozen_param_fragments[name]
|
240 |
+
|
241 |
+
if debug:
|
242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
243 |
+
|
244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
245 |
+
|
246 |
+
|
247 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
248 |
+
param_shapes = zero_model_states[0].param_shapes
|
249 |
+
|
250 |
+
# Reconstruction protocol:
|
251 |
+
#
|
252 |
+
# XXX: document this
|
253 |
+
|
254 |
+
if debug:
|
255 |
+
for i in range(world_size):
|
256 |
+
for j in range(len(fp32_flat_groups[0])):
|
257 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
258 |
+
|
259 |
+
# XXX: memory usage doubles here (zero2)
|
260 |
+
num_param_groups = len(fp32_flat_groups[0])
|
261 |
+
merged_single_partition_of_fp32_groups = []
|
262 |
+
for i in range(num_param_groups):
|
263 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
264 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
265 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
266 |
+
avail_numel = sum(
|
267 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
268 |
+
|
269 |
+
if debug:
|
270 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
271 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
272 |
+
# not asserting if there is a mismatch due to possible padding
|
273 |
+
print(f"Have {avail_numel} numels to process.")
|
274 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
275 |
+
|
276 |
+
# params
|
277 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
278 |
+
# out-of-core computing solution
|
279 |
+
total_numel = 0
|
280 |
+
total_params = 0
|
281 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
282 |
+
offset = 0
|
283 |
+
avail_numel = full_single_fp32_vector.numel()
|
284 |
+
for name, shape in shapes.items():
|
285 |
+
|
286 |
+
unpartitioned_numel = shape.numel()
|
287 |
+
total_numel += unpartitioned_numel
|
288 |
+
total_params += 1
|
289 |
+
|
290 |
+
if debug:
|
291 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
292 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
293 |
+
offset += unpartitioned_numel
|
294 |
+
|
295 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
296 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
297 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
298 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
299 |
+
align_to = 2 * world_size
|
300 |
+
|
301 |
+
def zero2_align(x):
|
302 |
+
return align_to * math.ceil(x / align_to)
|
303 |
+
|
304 |
+
if debug:
|
305 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
306 |
+
|
307 |
+
offset = zero2_align(offset)
|
308 |
+
avail_numel = zero2_align(avail_numel)
|
309 |
+
|
310 |
+
if debug:
|
311 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
312 |
+
|
313 |
+
# Sanity check
|
314 |
+
if offset != avail_numel:
|
315 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
316 |
+
|
317 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
318 |
+
|
319 |
+
|
320 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
321 |
+
state_dict = OrderedDict()
|
322 |
+
|
323 |
+
# buffers
|
324 |
+
buffers = zero_model_states[0].buffers
|
325 |
+
state_dict.update(buffers)
|
326 |
+
if debug:
|
327 |
+
print(f"added {len(buffers)} buffers")
|
328 |
+
|
329 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
330 |
+
|
331 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
332 |
+
|
333 |
+
# recover shared parameters
|
334 |
+
for pair in zero_model_states[0].shared_params:
|
335 |
+
if pair[1] in state_dict:
|
336 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
337 |
+
|
338 |
+
return state_dict
|
339 |
+
|
340 |
+
|
341 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
342 |
+
remainder = unpartitioned_numel % world_size
|
343 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
344 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
345 |
+
return partitioned_numel, padding_numel
|
346 |
+
|
347 |
+
|
348 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
349 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
350 |
+
return
|
351 |
+
|
352 |
+
if debug:
|
353 |
+
for i in range(world_size):
|
354 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
355 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
356 |
+
|
357 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
358 |
+
wanted_params = len(frozen_param_shapes)
|
359 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
360 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
361 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
362 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
363 |
+
|
364 |
+
total_params = 0
|
365 |
+
total_numel = 0
|
366 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
367 |
+
total_params += 1
|
368 |
+
unpartitioned_numel = shape.numel()
|
369 |
+
total_numel += unpartitioned_numel
|
370 |
+
|
371 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
372 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
373 |
+
|
374 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
375 |
+
|
376 |
+
if debug:
|
377 |
+
print(
|
378 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
379 |
+
)
|
380 |
+
|
381 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
382 |
+
|
383 |
+
|
384 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
385 |
+
param_shapes = zero_model_states[0].param_shapes
|
386 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
387 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
388 |
+
# param, re-consolidating each param, while dealing with padding if any
|
389 |
+
|
390 |
+
# merge list of dicts, preserving order
|
391 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
392 |
+
|
393 |
+
if debug:
|
394 |
+
for i in range(world_size):
|
395 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
396 |
+
|
397 |
+
wanted_params = len(param_shapes)
|
398 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
399 |
+
# not asserting if there is a mismatch due to possible padding
|
400 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
401 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
402 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
403 |
+
|
404 |
+
# params
|
405 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
406 |
+
# out-of-core computing solution
|
407 |
+
offset = 0
|
408 |
+
total_numel = 0
|
409 |
+
total_params = 0
|
410 |
+
for name, shape in param_shapes.items():
|
411 |
+
|
412 |
+
unpartitioned_numel = shape.numel()
|
413 |
+
total_numel += unpartitioned_numel
|
414 |
+
total_params += 1
|
415 |
+
|
416 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
417 |
+
|
418 |
+
if debug:
|
419 |
+
print(
|
420 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
421 |
+
)
|
422 |
+
|
423 |
+
# XXX: memory usage doubles here
|
424 |
+
state_dict[name] = torch.cat(
|
425 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
426 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
427 |
+
offset += partitioned_numel
|
428 |
+
|
429 |
+
offset *= world_size
|
430 |
+
|
431 |
+
# Sanity check
|
432 |
+
if offset != avail_numel:
|
433 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
434 |
+
|
435 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
436 |
+
|
437 |
+
|
438 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
439 |
+
state_dict = OrderedDict()
|
440 |
+
|
441 |
+
# buffers
|
442 |
+
buffers = zero_model_states[0].buffers
|
443 |
+
state_dict.update(buffers)
|
444 |
+
if debug:
|
445 |
+
print(f"added {len(buffers)} buffers")
|
446 |
+
|
447 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
448 |
+
|
449 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
450 |
+
|
451 |
+
# recover shared parameters
|
452 |
+
for pair in zero_model_states[0].shared_params:
|
453 |
+
if pair[1] in state_dict:
|
454 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
455 |
+
|
456 |
+
return state_dict
|
457 |
+
|
458 |
+
|
459 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
460 |
+
"""
|
461 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
462 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
463 |
+
via a model hub.
|
464 |
+
|
465 |
+
Args:
|
466 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
467 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
468 |
+
|
469 |
+
Returns:
|
470 |
+
- pytorch ``state_dict``
|
471 |
+
|
472 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
473 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
474 |
+
the checkpoint.
|
475 |
+
|
476 |
+
A typical usage might be ::
|
477 |
+
|
478 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
479 |
+
# do the training and checkpoint saving
|
480 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
481 |
+
model = model.cpu() # move to cpu
|
482 |
+
model.load_state_dict(state_dict)
|
483 |
+
# submit to model hub or save the model to share with others
|
484 |
+
|
485 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
486 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
487 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
488 |
+
|
489 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
490 |
+
|
491 |
+
"""
|
492 |
+
if tag is None:
|
493 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
494 |
+
if os.path.isfile(latest_path):
|
495 |
+
with open(latest_path, 'r') as fd:
|
496 |
+
tag = fd.read().strip()
|
497 |
+
else:
|
498 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
499 |
+
|
500 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
501 |
+
|
502 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
503 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
504 |
+
|
505 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
506 |
+
|
507 |
+
|
508 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
509 |
+
"""
|
510 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
511 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
512 |
+
|
513 |
+
Args:
|
514 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
515 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
516 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
517 |
+
"""
|
518 |
+
|
519 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
520 |
+
print(f"Saving fp32 state dict to {output_file}")
|
521 |
+
torch.save(state_dict, output_file)
|
522 |
+
|
523 |
+
|
524 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
525 |
+
"""
|
526 |
+
1. Put the provided model to cpu
|
527 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
528 |
+
3. Load it into the provided model
|
529 |
+
|
530 |
+
Args:
|
531 |
+
- ``model``: the model object to update
|
532 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
533 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
534 |
+
|
535 |
+
Returns:
|
536 |
+
- ``model`: modified model
|
537 |
+
|
538 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
539 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
540 |
+
conveniently placed for you in the checkpoint folder.
|
541 |
+
|
542 |
+
A typical usage might be ::
|
543 |
+
|
544 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
545 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
546 |
+
# submit to model hub or save the model to share with others
|
547 |
+
|
548 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
549 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
550 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
551 |
+
|
552 |
+
"""
|
553 |
+
logger.info(f"Extracting fp32 weights")
|
554 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
555 |
+
|
556 |
+
logger.info(f"Overwriting model with fp32 weights")
|
557 |
+
model = model.cpu()
|
558 |
+
model.load_state_dict(state_dict, strict=False)
|
559 |
+
|
560 |
+
return model
|
561 |
+
|
562 |
+
|
563 |
+
if __name__ == "__main__":
|
564 |
+
|
565 |
+
parser = argparse.ArgumentParser()
|
566 |
+
parser.add_argument("checkpoint_dir",
|
567 |
+
type=str,
|
568 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
569 |
+
parser.add_argument(
|
570 |
+
"output_file",
|
571 |
+
type=str,
|
572 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
573 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
574 |
+
args = parser.parse_args()
|
575 |
+
|
576 |
+
debug = args.debug
|
577 |
+
|
578 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)
|