--- library_name: peft license: mit base_model: EleutherAI/gpt-neo-125m tags: - axolotl - generated_from_trainer model-index: - name: 19783dba-2611-430a-89e2-4d277105a2fb results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/gpt-neo-125m bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 9400c082b072ce22_train_data.json ds_type: json format: custom path: /workspace/input_data/9400c082b072ce22_train_data.json type: field_instruction: ja field_output: en format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 4 eval_max_new_tokens: 128 eval_steps: 150 eval_table_size: null flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: Romain-XV/19783dba-2611-430a-89e2-4d277105a2fb hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_best_model_at_end: true load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.3 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lora_target_modules: - q_proj - k_proj lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 9660 micro_batch_size: 2 mlflow_experiment_name: /tmp/9400c082b072ce22_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 150 sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.03388084783433621 wandb_entity: null wandb_mode: online wandb_name: 97f965f0-6c2c-4001-93f0-b3bd5a572767 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 97f965f0-6c2c-4001-93f0-b3bd5a572767 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# 19783dba-2611-430a-89e2-4d277105a2fb This model is a fine-tuned version of [EleutherAI/gpt-neo-125m](https://huggingface.co/EleutherAI/gpt-neo-125m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9652 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 9660 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 22.3081 | 0.0001 | 1 | 5.3931 | | 12.1969 | 0.0084 | 150 | 3.0791 | | 12.8922 | 0.0168 | 300 | 2.9534 | | 12.5402 | 0.0252 | 450 | 2.8506 | | 10.4376 | 0.0337 | 600 | 2.7774 | | 9.6342 | 0.0421 | 750 | 2.7315 | | 11.2411 | 0.0505 | 900 | 2.6845 | | 12.9895 | 0.0589 | 1050 | 2.6467 | | 12.0386 | 0.0673 | 1200 | 2.6053 | | 11.1212 | 0.0757 | 1350 | 2.5762 | | 9.9151 | 0.0842 | 1500 | 2.5369 | | 11.2688 | 0.0926 | 1650 | 2.5001 | | 10.0221 | 0.1010 | 1800 | 2.4761 | | 10.3173 | 0.1094 | 1950 | 2.4375 | | 10.428 | 0.1178 | 2100 | 2.4349 | | 7.0369 | 0.1262 | 2250 | 2.3860 | | 10.4659 | 0.1347 | 2400 | 2.3725 | | 10.4187 | 0.1431 | 2550 | 2.3579 | | 6.8085 | 0.1515 | 2700 | 2.3285 | | 12.6518 | 0.1599 | 2850 | 2.3110 | | 9.9324 | 0.1683 | 3000 | 2.2927 | | 7.8111 | 0.1767 | 3150 | 2.2739 | | 9.2326 | 0.1852 | 3300 | 2.2593 | | 8.6382 | 0.1936 | 3450 | 2.2342 | | 8.518 | 0.2020 | 3600 | 2.2290 | | 6.4198 | 0.2104 | 3750 | 2.2118 | | 9.0537 | 0.2188 | 3900 | 2.2064 | | 6.6054 | 0.2272 | 4050 | 2.1808 | | 8.1502 | 0.2357 | 4200 | 2.1758 | | 7.229 | 0.2441 | 4350 | 2.1579 | | 7.0952 | 0.2525 | 4500 | 2.1411 | | 7.7773 | 0.2609 | 4650 | 2.1294 | | 9.354 | 0.2693 | 4800 | 2.1157 | | 9.6896 | 0.2777 | 4950 | 2.1120 | | 9.817 | 0.2862 | 5100 | 2.0999 | | 9.7308 | 0.2946 | 5250 | 2.0837 | | 7.0272 | 0.3030 | 5400 | 2.0796 | | 9.446 | 0.3114 | 5550 | 2.0694 | | 9.1402 | 0.3198 | 5700 | 2.0556 | | 7.8589 | 0.3282 | 5850 | 2.0542 | | 8.3354 | 0.3367 | 6000 | 2.0445 | | 8.081 | 0.3451 | 6150 | 2.0343 | | 6.7192 | 0.3535 | 6300 | 2.0259 | | 10.2732 | 0.3619 | 6450 | 2.0235 | | 9.3245 | 0.3703 | 6600 | 2.0137 | | 8.6904 | 0.3787 | 6750 | 2.0092 | | 6.4253 | 0.3872 | 6900 | 2.0042 | | 8.0254 | 0.3956 | 7050 | 1.9975 | | 10.3048 | 0.4040 | 7200 | 1.9963 | | 9.2663 | 0.4124 | 7350 | 1.9909 | | 8.596 | 0.4208 | 7500 | 1.9860 | | 9.4026 | 0.4292 | 7650 | 1.9820 | | 7.5361 | 0.4377 | 7800 | 1.9791 | | 10.1732 | 0.4461 | 7950 | 1.9773 | | 9.5052 | 0.4545 | 8100 | 1.9737 | | 9.1775 | 0.4629 | 8250 | 1.9720 | | 5.179 | 0.4713 | 8400 | 1.9702 | | 6.0604 | 0.4797 | 8550 | 1.9688 | | 7.6645 | 0.4882 | 8700 | 1.9676 | | 6.7768 | 0.4966 | 8850 | 1.9666 | | 8.6168 | 0.5050 | 9000 | 1.9657 | | 9.4105 | 0.5134 | 9150 | 1.9658 | | 8.4106 | 0.5218 | 9300 | 1.9655 | | 5.5724 | 0.5302 | 9450 | 1.9654 | | 5.8533 | 0.5387 | 9600 | 1.9652 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1