RomainDarous commited on
Commit
13092ae
·
verified ·
1 Parent(s): c8eb60f

Add new SentenceTransformer model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_MultiHeadGeneralizedPooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "sentence_dim": 768,
3
+ "token_dim": 768,
4
+ "num_heads": 8,
5
+ "initialize": 1,
6
+ "pooling_type": 0
7
+ }
1_MultiHeadGeneralizedPooling/multihead_pooling_weights.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46ce104b9abfcdb4a59f949024c3d2d823885b3d893aea23b6218c334731b882
3
+ size 4726278
README.md ADDED
@@ -0,0 +1,1068 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - de
4
+ - en
5
+ - es
6
+ - fr
7
+ - it
8
+ - nl
9
+ - pl
10
+ - pt
11
+ - ru
12
+ - zh
13
+ tags:
14
+ - sentence-transformers
15
+ - sentence-similarity
16
+ - feature-extraction
17
+ - generated_from_trainer
18
+ - dataset_size:51741
19
+ - loss:CoSENTLoss
20
+ base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
21
+ widget:
22
+ - source_sentence: Starsza para azjatycka pozuje z noworodkiem przy stole obiadowym.
23
+ sentences:
24
+ - Koszykarz ma zamiar zdobyć punkty dla swojej drużyny.
25
+ - Grupa starszych osób pozuje wokół stołu w jadalni.
26
+ - Możliwe, że układ słoneczny taki jak nasz może istnieć poza galaktyką.
27
+ - source_sentence: Englisch arbeitet überall mit Menschen, die Dinge kaufen und verkaufen,
28
+ und in der Gastfreundschaft und im Tourismusgeschäft.
29
+ sentences:
30
+ - Ich bin in Maharashtra (einschließlich Mumbai) und Andhra Pradesh herumgereist,
31
+ und ich hatte kein Problem damit, nur mit Englisch auszukommen.
32
+ - 'Ein griechischsprachiger Sklave (δούλος, doulos) würde seinen Herrn, glaube ich,
33
+ κύριος nennen (translit: kurios; Herr, Herr, Herr, Herr; Vokativform: κύριε).'
34
+ - Das Paar lag auf dem Bett.
35
+ - source_sentence: Si vous vous comprenez et comprenez votre ennemi, vous aurez beaucoup
36
+ plus de chances de gagner n'importe quelle bataille.
37
+ sentences:
38
+ - 'Outre les probabilités de gagner une bataille théorique, cette citation a une
39
+ autre signification : l''importance de connaître/comprendre les autres.'
40
+ - Une femme et un chien se promènent ensemble.
41
+ - Un homme joue de la guitare.
42
+ - source_sentence: Un homme joue de la harpe.
43
+ sentences:
44
+ - Une femme joue de la guitare.
45
+ - une femme a un enfant.
46
+ - Un groupe de personnes est debout et assis sur le sol la nuit.
47
+ - source_sentence: Dois cães a lutar na neve.
48
+ sentences:
49
+ - Dois cães brincam na neve.
50
+ - Pode sempre perguntar, então é a escolha do autor a aceitar ou não.
51
+ - Um gato está a caminhar sobre chão de madeira dura.
52
+ datasets:
53
+ - PhilipMay/stsb_multi_mt
54
+ pipeline_tag: sentence-similarity
55
+ library_name: sentence-transformers
56
+ metrics:
57
+ - pearson_cosine
58
+ - spearman_cosine
59
+ model-index:
60
+ - name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
61
+ results:
62
+ - task:
63
+ type: semantic-similarity
64
+ name: Semantic Similarity
65
+ dataset:
66
+ name: sts eval
67
+ type: sts-eval
68
+ metrics:
69
+ - type: pearson_cosine
70
+ value: 0.8423180648713237
71
+ name: Pearson Cosine
72
+ - type: spearman_cosine
73
+ value: 0.8595850000432059
74
+ name: Spearman Cosine
75
+ - type: pearson_cosine
76
+ value: 0.8420181975402647
77
+ name: Pearson Cosine
78
+ - type: spearman_cosine
79
+ value: 0.8630073561241816
80
+ name: Spearman Cosine
81
+ - type: pearson_cosine
82
+ value: 0.8405171361303234
83
+ name: Pearson Cosine
84
+ - type: spearman_cosine
85
+ value: 0.8594948677596693
86
+ name: Spearman Cosine
87
+ - type: pearson_cosine
88
+ value: 0.8375312155777364
89
+ name: Pearson Cosine
90
+ - type: spearman_cosine
91
+ value: 0.8583531749722014
92
+ name: Spearman Cosine
93
+ - type: pearson_cosine
94
+ value: 0.8397619344296936
95
+ name: Pearson Cosine
96
+ - type: spearman_cosine
97
+ value: 0.8592894281053397
98
+ name: Spearman Cosine
99
+ - type: pearson_cosine
100
+ value: 0.8302450119489335
101
+ name: Pearson Cosine
102
+ - type: spearman_cosine
103
+ value: 0.8477495437950113
104
+ name: Spearman Cosine
105
+ - type: pearson_cosine
106
+ value: 0.8403036335437926
107
+ name: Pearson Cosine
108
+ - type: spearman_cosine
109
+ value: 0.8618318944578455
110
+ name: Spearman Cosine
111
+ - type: pearson_cosine
112
+ value: 0.838706056263606
113
+ name: Pearson Cosine
114
+ - type: spearman_cosine
115
+ value: 0.8574971366611375
116
+ name: Spearman Cosine
117
+ - type: pearson_cosine
118
+ value: 0.8413052113094718
119
+ name: Pearson Cosine
120
+ - type: spearman_cosine
121
+ value: 0.8611085200053895
122
+ name: Spearman Cosine
123
+ - task:
124
+ type: semantic-similarity
125
+ name: Semantic Similarity
126
+ dataset:
127
+ name: sts test
128
+ type: sts-test
129
+ metrics:
130
+ - type: pearson_cosine
131
+ value: 0.7456938524838218
132
+ name: Pearson Cosine
133
+ - type: spearman_cosine
134
+ value: 0.7483592546028903
135
+ name: Spearman Cosine
136
+ - type: pearson_cosine
137
+ value: 0.7237526314017121
138
+ name: Pearson Cosine
139
+ - type: spearman_cosine
140
+ value: 0.7169355021670776
141
+ name: Spearman Cosine
142
+ - type: pearson_cosine
143
+ value: 0.7669235794906317
144
+ name: Pearson Cosine
145
+ - type: spearman_cosine
146
+ value: 0.7631313253470643
147
+ name: Spearman Cosine
148
+ - type: pearson_cosine
149
+ value: 0.8298244150963187
150
+ name: Pearson Cosine
151
+ - type: spearman_cosine
152
+ value: 0.8324038122126458
153
+ name: Spearman Cosine
154
+ - type: pearson_cosine
155
+ value: 0.7166564070706897
156
+ name: Pearson Cosine
157
+ - type: spearman_cosine
158
+ value: 0.7227801582959456
159
+ name: Spearman Cosine
160
+ - type: pearson_cosine
161
+ value: 0.7855295239932334
162
+ name: Pearson Cosine
163
+ - type: spearman_cosine
164
+ value: 0.7934626158625494
165
+ name: Spearman Cosine
166
+ - type: pearson_cosine
167
+ value: 0.8386050236111093
168
+ name: Pearson Cosine
169
+ - type: spearman_cosine
170
+ value: 0.8275901416546908
171
+ name: Spearman Cosine
172
+ - type: pearson_cosine
173
+ value: 0.779112011887379
174
+ name: Pearson Cosine
175
+ - type: spearman_cosine
176
+ value: 0.7729611139511264
177
+ name: Spearman Cosine
178
+ - type: pearson_cosine
179
+ value: 0.7878478906763803
180
+ name: Pearson Cosine
181
+ - type: spearman_cosine
182
+ value: 0.7846990470347196
183
+ name: Spearman Cosine
184
+ - type: pearson_cosine
185
+ value: 0.7882844791307567
186
+ name: Pearson Cosine
187
+ - type: spearman_cosine
188
+ value: 0.7878180406501333
189
+ name: Spearman Cosine
190
+ ---
191
+
192
+ # SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
193
+
194
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) on the [multi_stsb_de](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt), [multi_stsb_es](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt), [multi_stsb_fr](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt), [multi_stsb_it](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt), [multi_stsb_nl](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt), [multi_stsb_pl](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt), [multi_stsb_pt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt), [multi_stsb_ru](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) and [multi_stsb_zh](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
195
+
196
+ ## Model Details
197
+
198
+ ### Model Description
199
+ - **Model Type:** Sentence Transformer
200
+ - **Base model:** [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) <!-- at revision 84fccfe766bcfd679e39efefe4ebf45af190ad2d -->
201
+ - **Maximum Sequence Length:** 128 tokens
202
+ - **Output Dimensionality:** 768 dimensions
203
+ - **Similarity Function:** Cosine Similarity
204
+ - **Training Datasets:**
205
+ - [multi_stsb_de](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
206
+ - [multi_stsb_es](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
207
+ - [multi_stsb_fr](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
208
+ - [multi_stsb_it](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
209
+ - [multi_stsb_nl](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
210
+ - [multi_stsb_pl](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
211
+ - [multi_stsb_pt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
212
+ - [multi_stsb_ru](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
213
+ - [multi_stsb_zh](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
214
+ - **Languages:** de, en, es, fr, it, nl, pl, pt, ru, zh
215
+ <!-- - **License:** Unknown -->
216
+
217
+ ### Model Sources
218
+
219
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
220
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
221
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
222
+
223
+ ### Full Model Architecture
224
+
225
+ ```
226
+ SentenceTransformer(
227
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
228
+ (1): MultiHeadGeneralizedPooling(
229
+ (P): ModuleList(
230
+ (0-7): 8 x Linear(in_features=768, out_features=96, bias=True)
231
+ )
232
+ (W1): ModuleList(
233
+ (0-7): 8 x Linear(in_features=96, out_features=384, bias=True)
234
+ )
235
+ (W2): ModuleList(
236
+ (0-7): 8 x Linear(in_features=384, out_features=96, bias=True)
237
+ )
238
+ )
239
+ )
240
+ ```
241
+
242
+ ## Usage
243
+
244
+ ### Direct Usage (Sentence Transformers)
245
+
246
+ First install the Sentence Transformers library:
247
+
248
+ ```bash
249
+ pip install -U sentence-transformers
250
+ ```
251
+
252
+ Then you can load this model and run inference.
253
+ ```python
254
+ from sentence_transformers import SentenceTransformer
255
+
256
+ # Download from the 🤗 Hub
257
+ model = SentenceTransformer("RomainDarous/large_directFourEpoch_additivePooling_noisedInit_stsModel")
258
+ # Run inference
259
+ sentences = [
260
+ 'Dois cães a lutar na neve.',
261
+ 'Dois cães brincam na neve.',
262
+ 'Pode sempre perguntar, então é a escolha do autor a aceitar ou não.',
263
+ ]
264
+ embeddings = model.encode(sentences)
265
+ print(embeddings.shape)
266
+ # [3, 768]
267
+
268
+ # Get the similarity scores for the embeddings
269
+ similarities = model.similarity(embeddings, embeddings)
270
+ print(similarities.shape)
271
+ # [3, 3]
272
+ ```
273
+
274
+ <!--
275
+ ### Direct Usage (Transformers)
276
+
277
+ <details><summary>Click to see the direct usage in Transformers</summary>
278
+
279
+ </details>
280
+ -->
281
+
282
+ <!--
283
+ ### Downstream Usage (Sentence Transformers)
284
+
285
+ You can finetune this model on your own dataset.
286
+
287
+ <details><summary>Click to expand</summary>
288
+
289
+ </details>
290
+ -->
291
+
292
+ <!--
293
+ ### Out-of-Scope Use
294
+
295
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
296
+ -->
297
+
298
+ ## Evaluation
299
+
300
+ ### Metrics
301
+
302
+ #### Semantic Similarity
303
+
304
+ * Datasets: `sts-eval`, `sts-test`, `sts-test`, `sts-test`, `sts-test`, `sts-test`, `sts-test`, `sts-test`, `sts-test`, `sts-test` and `sts-test`
305
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
306
+
307
+ | Metric | sts-eval | sts-test |
308
+ |:--------------------|:-----------|:-----------|
309
+ | pearson_cosine | 0.8423 | 0.7883 |
310
+ | **spearman_cosine** | **0.8596** | **0.7878** |
311
+
312
+ #### Semantic Similarity
313
+
314
+ * Dataset: `sts-eval`
315
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
316
+
317
+ | Metric | Value |
318
+ |:--------------------|:----------|
319
+ | pearson_cosine | 0.842 |
320
+ | **spearman_cosine** | **0.863** |
321
+
322
+ #### Semantic Similarity
323
+
324
+ * Dataset: `sts-eval`
325
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
326
+
327
+ | Metric | Value |
328
+ |:--------------------|:-----------|
329
+ | pearson_cosine | 0.8405 |
330
+ | **spearman_cosine** | **0.8595** |
331
+
332
+ #### Semantic Similarity
333
+
334
+ * Dataset: `sts-eval`
335
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
336
+
337
+ | Metric | Value |
338
+ |:--------------------|:-----------|
339
+ | pearson_cosine | 0.8375 |
340
+ | **spearman_cosine** | **0.8584** |
341
+
342
+ #### Semantic Similarity
343
+
344
+ * Dataset: `sts-eval`
345
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
346
+
347
+ | Metric | Value |
348
+ |:--------------------|:-----------|
349
+ | pearson_cosine | 0.8398 |
350
+ | **spearman_cosine** | **0.8593** |
351
+
352
+ #### Semantic Similarity
353
+
354
+ * Dataset: `sts-eval`
355
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
356
+
357
+ | Metric | Value |
358
+ |:--------------------|:-----------|
359
+ | pearson_cosine | 0.8302 |
360
+ | **spearman_cosine** | **0.8477** |
361
+
362
+ #### Semantic Similarity
363
+
364
+ * Dataset: `sts-eval`
365
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
366
+
367
+ | Metric | Value |
368
+ |:--------------------|:-----------|
369
+ | pearson_cosine | 0.8403 |
370
+ | **spearman_cosine** | **0.8618** |
371
+
372
+ #### Semantic Similarity
373
+
374
+ * Dataset: `sts-eval`
375
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
376
+
377
+ | Metric | Value |
378
+ |:--------------------|:-----------|
379
+ | pearson_cosine | 0.8387 |
380
+ | **spearman_cosine** | **0.8575** |
381
+
382
+ #### Semantic Similarity
383
+
384
+ * Dataset: `sts-eval`
385
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
386
+
387
+ | Metric | Value |
388
+ |:--------------------|:-----------|
389
+ | pearson_cosine | 0.8413 |
390
+ | **spearman_cosine** | **0.8611** |
391
+
392
+ <!--
393
+ ## Bias, Risks and Limitations
394
+
395
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
396
+ -->
397
+
398
+ <!--
399
+ ### Recommendations
400
+
401
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
402
+ -->
403
+
404
+ ## Training Details
405
+
406
+ ### Training Datasets
407
+ <details><summary>multi_stsb_de</summary>
408
+
409
+ #### multi_stsb_de
410
+
411
+ * Dataset: [multi_stsb_de](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
412
+ * Size: 5,749 training samples
413
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
414
+ * Approximate statistics based on the first 1000 samples:
415
+ | | sentence1 | sentence2 | score |
416
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
417
+ | type | string | string | float |
418
+ | details | <ul><li>min: 5 tokens</li><li>mean: 11.58 tokens</li><li>max: 37 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.53 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> |
419
+ * Samples:
420
+ | sentence1 | sentence2 | score |
421
+ |:---------------------------------------------------------------|:--------------------------------------------------------------------------|:--------------------------------|
422
+ | <code>Ein Flugzeug hebt gerade ab.</code> | <code>Ein Flugzeug hebt gerade ab.</code> | <code>1.0</code> |
423
+ | <code>Ein Mann spielt eine große Flöte.</code> | <code>Ein Mann spielt eine Flöte.</code> | <code>0.7599999904632568</code> |
424
+ | <code>Ein Mann streicht geriebenen Käse auf eine Pizza.</code> | <code>Ein Mann streicht geriebenen Käse auf eine ungekochte Pizza.</code> | <code>0.7599999904632568</code> |
425
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
426
+ ```json
427
+ {
428
+ "scale": 20.0,
429
+ "similarity_fct": "pairwise_cos_sim"
430
+ }
431
+ ```
432
+ </details>
433
+ <details><summary>multi_stsb_es</summary>
434
+
435
+ #### multi_stsb_es
436
+
437
+ * Dataset: [multi_stsb_es](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
438
+ * Size: 5,749 training samples
439
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
440
+ * Approximate statistics based on the first 1000 samples:
441
+ | | sentence1 | sentence2 | score |
442
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
443
+ | type | string | string | float |
444
+ | details | <ul><li>min: 7 tokens</li><li>mean: 12.21 tokens</li><li>max: 33 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 12.07 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> |
445
+ * Samples:
446
+ | sentence1 | sentence2 | score |
447
+ |:----------------------------------------------------------------|:----------------------------------------------------------------------|:--------------------------------|
448
+ | <code>Un avión está despegando.</code> | <code>Un avión está despegando.</code> | <code>1.0</code> |
449
+ | <code>Un hombre está tocando una gran flauta.</code> | <code>Un hombre está tocando una flauta.</code> | <code>0.7599999904632568</code> |
450
+ | <code>Un hombre está untando queso rallado en una pizza.</code> | <code>Un hombre está untando queso rallado en una pizza cruda.</code> | <code>0.7599999904632568</code> |
451
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
452
+ ```json
453
+ {
454
+ "scale": 20.0,
455
+ "similarity_fct": "pairwise_cos_sim"
456
+ }
457
+ ```
458
+ </details>
459
+ <details><summary>multi_stsb_fr</summary>
460
+
461
+ #### multi_stsb_fr
462
+
463
+ * Dataset: [multi_stsb_fr](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
464
+ * Size: 5,749 training samples
465
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
466
+ * Approximate statistics based on the first 1000 samples:
467
+ | | sentence1 | sentence2 | score |
468
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
469
+ | type | string | string | float |
470
+ | details | <ul><li>min: 6 tokens</li><li>mean: 12.6 tokens</li><li>max: 33 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.49 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> |
471
+ * Samples:
472
+ | sentence1 | sentence2 | score |
473
+ |:-----------------------------------------------------------|:---------------------------------------------------------------------|:--------------------------------|
474
+ | <code>Un avion est en train de décoller.</code> | <code>Un avion est en train de décoller.</code> | <code>1.0</code> |
475
+ | <code>Un homme joue d'une grande flûte.</code> | <code>Un homme joue de la flûte.</code> | <code>0.7599999904632568</code> |
476
+ | <code>Un homme étale du fromage râpé sur une pizza.</code> | <code>Un homme étale du fromage râpé sur une pizza non cuite.</code> | <code>0.7599999904632568</code> |
477
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
478
+ ```json
479
+ {
480
+ "scale": 20.0,
481
+ "similarity_fct": "pairwise_cos_sim"
482
+ }
483
+ ```
484
+ </details>
485
+ <details><summary>multi_stsb_it</summary>
486
+
487
+ #### multi_stsb_it
488
+
489
+ * Dataset: [multi_stsb_it](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
490
+ * Size: 5,749 training samples
491
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
492
+ * Approximate statistics based on the first 1000 samples:
493
+ | | sentence1 | sentence2 | score |
494
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
495
+ | type | string | string | float |
496
+ | details | <ul><li>min: 7 tokens</li><li>mean: 12.77 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 12.69 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> |
497
+ * Samples:
498
+ | sentence1 | sentence2 | score |
499
+ |:--------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:--------------------------------|
500
+ | <code>Un aereo sta decollando.</code> | <code>Un aereo sta decollando.</code> | <code>1.0</code> |
501
+ | <code>Un uomo sta suonando un grande flauto.</code> | <code>Un uomo sta suonando un flauto.</code> | <code>0.7599999904632568</code> |
502
+ | <code>Un uomo sta spalmando del formaggio a pezzetti su una pizza.</code> | <code>Un uomo sta spalmando del formaggio a pezzetti su una pizza non cotta.</code> | <code>0.7599999904632568</code> |
503
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
504
+ ```json
505
+ {
506
+ "scale": 20.0,
507
+ "similarity_fct": "pairwise_cos_sim"
508
+ }
509
+ ```
510
+ </details>
511
+ <details><summary>multi_stsb_nl</summary>
512
+
513
+ #### multi_stsb_nl
514
+
515
+ * Dataset: [multi_stsb_nl](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
516
+ * Size: 5,749 training samples
517
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
518
+ * Approximate statistics based on the first 1000 samples:
519
+ | | sentence1 | sentence2 | score |
520
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
521
+ | type | string | string | float |
522
+ | details | <ul><li>min: 6 tokens</li><li>mean: 11.67 tokens</li><li>max: 33 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.55 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> |
523
+ * Samples:
524
+ | sentence1 | sentence2 | score |
525
+ |:--------------------------------------------------------|:--------------------------------------------------------------------|:--------------------------------|
526
+ | <code>Er gaat een vliegtuig opstijgen.</code> | <code>Er gaat een vliegtuig opstijgen.</code> | <code>1.0</code> |
527
+ | <code>Een man speelt een grote fluit.</code> | <code>Een man speelt fluit.</code> | <code>0.7599999904632568</code> |
528
+ | <code>Een man smeert geraspte kaas op een pizza.</code> | <code>Een man strooit geraspte kaas op een ongekookte pizza.</code> | <code>0.7599999904632568</code> |
529
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
530
+ ```json
531
+ {
532
+ "scale": 20.0,
533
+ "similarity_fct": "pairwise_cos_sim"
534
+ }
535
+ ```
536
+ </details>
537
+ <details><summary>multi_stsb_pl</summary>
538
+
539
+ #### multi_stsb_pl
540
+
541
+ * Dataset: [multi_stsb_pl](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
542
+ * Size: 5,749 training samples
543
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
544
+ * Approximate statistics based on the first 1000 samples:
545
+ | | sentence1 | sentence2 | score |
546
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
547
+ | type | string | string | float |
548
+ | details | <ul><li>min: 5 tokens</li><li>mean: 12.2 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 12.11 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> |
549
+ * Samples:
550
+ | sentence1 | sentence2 | score |
551
+ |:-----------------------------------------------------------|:------------------------------------------------------------------------|:--------------------------------|
552
+ | <code>Samolot wystartował.</code> | <code>Samolot wystartował.</code> | <code>1.0</code> |
553
+ | <code>Człowiek gra na dużym flecie.</code> | <code>Człowiek gra na flecie.</code> | <code>0.7599999904632568</code> |
554
+ | <code>Mężczyzna rozsiewa na pizzy rozdrobniony ser.</code> | <code>Mężczyzna rozsiewa rozdrobniony ser na niegotowanej pizzy.</code> | <code>0.7599999904632568</code> |
555
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
556
+ ```json
557
+ {
558
+ "scale": 20.0,
559
+ "similarity_fct": "pairwise_cos_sim"
560
+ }
561
+ ```
562
+ </details>
563
+ <details><summary>multi_stsb_pt</summary>
564
+
565
+ #### multi_stsb_pt
566
+
567
+ * Dataset: [multi_stsb_pt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
568
+ * Size: 5,749 training samples
569
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
570
+ * Approximate statistics based on the first 1000 samples:
571
+ | | sentence1 | sentence2 | score |
572
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
573
+ | type | string | string | float |
574
+ | details | <ul><li>min: 7 tokens</li><li>mean: 12.33 tokens</li><li>max: 34 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 12.29 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> |
575
+ * Samples:
576
+ | sentence1 | sentence2 | score |
577
+ |:------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------|
578
+ | <code>Um avião está a descolar.</code> | <code>Um avião aéreo está a descolar.</code> | <code>1.0</code> |
579
+ | <code>Um homem está a tocar uma grande flauta.</code> | <code>Um homem está a tocar uma flauta.</code> | <code>0.7599999904632568</code> |
580
+ | <code>Um homem está a espalhar queijo desfiado numa pizza.</code> | <code>Um homem está a espalhar queijo desfiado sobre uma pizza não cozida.</code> | <code>0.7599999904632568</code> |
581
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
582
+ ```json
583
+ {
584
+ "scale": 20.0,
585
+ "similarity_fct": "pairwise_cos_sim"
586
+ }
587
+ ```
588
+ </details>
589
+ <details><summary>multi_stsb_ru</summary>
590
+
591
+ #### multi_stsb_ru
592
+
593
+ * Dataset: [multi_stsb_ru](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
594
+ * Size: 5,749 training samples
595
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
596
+ * Approximate statistics based on the first 1000 samples:
597
+ | | sentence1 | sentence2 | score |
598
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
599
+ | type | string | string | float |
600
+ | details | <ul><li>min: 5 tokens</li><li>mean: 11.19 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 11.17 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> |
601
+ * Samples:
602
+ | sentence1 | sentence2 | score |
603
+ |:------------------------------------------------|:---------------------------------------------------------------------|:--------------------------------|
604
+ | <code>Самолет взлетает.</code> | <code>Взлетает самолет.</code> | <code>1.0</code> |
605
+ | <code>Человек играет на большой флейте.</code> | <code>Человек играет на флейте.</code> | <code>0.7599999904632568</code> |
606
+ | <code>Мужчина разбрасывает сыр на пиццу.</code> | <code>Мужчина разбрасывает измельченный сыр на вареную пиццу.</code> | <code>0.7599999904632568</code> |
607
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
608
+ ```json
609
+ {
610
+ "scale": 20.0,
611
+ "similarity_fct": "pairwise_cos_sim"
612
+ }
613
+ ```
614
+ </details>
615
+ <details><summary>multi_stsb_zh</summary>
616
+
617
+ #### multi_stsb_zh
618
+
619
+ * Dataset: [multi_stsb_zh](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
620
+ * Size: 5,749 training samples
621
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
622
+ * Approximate statistics based on the first 1000 samples:
623
+ | | sentence1 | sentence2 | score |
624
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
625
+ | type | string | string | float |
626
+ | details | <ul><li>min: 6 tokens</li><li>mean: 10.7 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 10.79 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> |
627
+ * Samples:
628
+ | sentence1 | sentence2 | score |
629
+ |:------------------------------|:----------------------------------|:--------------------------------|
630
+ | <code>一架飞机正在起飞。</code> | <code>一架飞机正在起飞。</code> | <code>1.0</code> |
631
+ | <code>一个男人正在吹一支大笛子。</code> | <code>一个人在吹笛子。</code> | <code>0.7599999904632568</code> |
632
+ | <code>一名男子正在比萨饼上涂抹奶酪丝。</code> | <code>一名男子正在将奶酪丝涂抹在未熟的披萨上。</code> | <code>0.7599999904632568</code> |
633
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
634
+ ```json
635
+ {
636
+ "scale": 20.0,
637
+ "similarity_fct": "pairwise_cos_sim"
638
+ }
639
+ ```
640
+ </details>
641
+
642
+ ### Evaluation Datasets
643
+ <details><summary>multi_stsb_de</summary>
644
+
645
+ #### multi_stsb_de
646
+
647
+ * Dataset: [multi_stsb_de](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
648
+ * Size: 1,500 evaluation samples
649
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
650
+ * Approximate statistics based on the first 1000 samples:
651
+ | | sentence1 | sentence2 | score |
652
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
653
+ | type | string | string | float |
654
+ | details | <ul><li>min: 5 tokens</li><li>mean: 18.25 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 18.25 tokens</li><li>max: 54 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.42</li><li>max: 1.0</li></ul> |
655
+ * Samples:
656
+ | sentence1 | sentence2 | score |
657
+ |:-------------------------------------------------------------|:-----------------------------------------------------------|:-------------------------------|
658
+ | <code>Ein Mann mit einem Schutzhelm tanzt.</code> | <code>Ein Mann mit einem Schutzhelm tanzt.</code> | <code>1.0</code> |
659
+ | <code>Ein kleines Kind reitet auf einem Pferd.</code> | <code>Ein Kind reitet auf einem Pferd.</code> | <code>0.949999988079071</code> |
660
+ | <code>Ein Mann verfüttert eine Maus an eine Schlange.</code> | <code>Der Mann füttert die Schlange mit einer Maus.</code> | <code>1.0</code> |
661
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
662
+ ```json
663
+ {
664
+ "scale": 20.0,
665
+ "similarity_fct": "pairwise_cos_sim"
666
+ }
667
+ ```
668
+ </details>
669
+ <details><summary>multi_stsb_es</summary>
670
+
671
+ #### multi_stsb_es
672
+
673
+ * Dataset: [multi_stsb_es](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
674
+ * Size: 1,500 evaluation samples
675
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
676
+ * Approximate statistics based on the first 1000 samples:
677
+ | | sentence1 | sentence2 | score |
678
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
679
+ | type | string | string | float |
680
+ | details | <ul><li>min: 7 tokens</li><li>mean: 17.98 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 17.86 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.42</li><li>max: 1.0</li></ul> |
681
+ * Samples:
682
+ | sentence1 | sentence2 | score |
683
+ |:----------------------------------------------------------------------|:---------------------------------------------------------------------|:-------------------------------|
684
+ | <code>Un hombre con un casco está bailando.</code> | <code>Un hombre con un casco está bailando.</code> | <code>1.0</code> |
685
+ | <code>Un niño pequeño está montando a caballo.</code> | <code>Un niño está montando a caballo.</code> | <code>0.949999988079071</code> |
686
+ | <code>Un hombre está alimentando a una serpiente con un ratón.</code> | <code>El hombre está alimentando a la serpiente con un ratón.</code> | <code>1.0</code> |
687
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
688
+ ```json
689
+ {
690
+ "scale": 20.0,
691
+ "similarity_fct": "pairwise_cos_sim"
692
+ }
693
+ ```
694
+ </details>
695
+ <details><summary>multi_stsb_fr</summary>
696
+
697
+ #### multi_stsb_fr
698
+
699
+ * Dataset: [multi_stsb_fr](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
700
+ * Size: 1,500 evaluation samples
701
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
702
+ * Approximate statistics based on the first 1000 samples:
703
+ | | sentence1 | sentence2 | score |
704
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
705
+ | type | string | string | float |
706
+ | details | <ul><li>min: 6 tokens</li><li>mean: 19.7 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 19.65 tokens</li><li>max: 51 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.42</li><li>max: 1.0</li></ul> |
707
+ * Samples:
708
+ | sentence1 | sentence2 | score |
709
+ |:-------------------------------------------------------------------------|:----------------------------------------------------------------------------|:-------------------------------|
710
+ | <code>Un homme avec un casque de sécurité est en train de danser.</code> | <code>Un homme portant un casque de sécurité est en train de danser.</code> | <code>1.0</code> |
711
+ | <code>Un jeune enfant monte à cheval.</code> | <code>Un enfant monte à cheval.</code> | <code>0.949999988079071</code> |
712
+ | <code>Un homme donne une souris à un serpent.</code> | <code>L'homme donne une souris au serpent.</code> | <code>1.0</code> |
713
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
714
+ ```json
715
+ {
716
+ "scale": 20.0,
717
+ "similarity_fct": "pairwise_cos_sim"
718
+ }
719
+ ```
720
+ </details>
721
+ <details><summary>multi_stsb_it</summary>
722
+
723
+ #### multi_stsb_it
724
+
725
+ * Dataset: [multi_stsb_it](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
726
+ * Size: 1,500 evaluation samples
727
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
728
+ * Approximate statistics based on the first 1000 samples:
729
+ | | sentence1 | sentence2 | score |
730
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
731
+ | type | string | string | float |
732
+ | details | <ul><li>min: 6 tokens</li><li>mean: 18.42 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 18.43 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.42</li><li>max: 1.0</li></ul> |
733
+ * Samples:
734
+ | sentence1 | sentence2 | score |
735
+ |:------------------------------------------------------------------|:---------------------------------------------------------------|:-------------------------------|
736
+ | <code>Un uomo con l'elmetto sta ballando.</code> | <code>Un uomo che indossa un elmetto sta ballando.</code> | <code>1.0</code> |
737
+ | <code>Un bambino piccolo sta cavalcando un cavallo.</code> | <code>Un bambino sta cavalcando un cavallo.</code> | <code>0.949999988079071</code> |
738
+ | <code>Un uomo sta dando da mangiare un topo a un serpente.</code> | <code>L'uomo sta dando da mangiare un topo al serpente.</code> | <code>1.0</code> |
739
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
740
+ ```json
741
+ {
742
+ "scale": 20.0,
743
+ "similarity_fct": "pairwise_cos_sim"
744
+ }
745
+ ```
746
+ </details>
747
+ <details><summary>multi_stsb_nl</summary>
748
+
749
+ #### multi_stsb_nl
750
+
751
+ * Dataset: [multi_stsb_nl](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
752
+ * Size: 1,500 evaluation samples
753
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
754
+ * Approximate statistics based on the first 1000 samples:
755
+ | | sentence1 | sentence2 | score |
756
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
757
+ | type | string | string | float |
758
+ | details | <ul><li>min: 5 tokens</li><li>mean: 17.88 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 17.71 tokens</li><li>max: 51 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.42</li><li>max: 1.0</li></ul> |
759
+ * Samples:
760
+ | sentence1 | sentence2 | score |
761
+ |:-----------------------------------------------------|:-----------------------------------------------------|:-------------------------------|
762
+ | <code>Een man met een helm is aan het dansen.</code> | <code>Een man met een helm is aan het dansen.</code> | <code>1.0</code> |
763
+ | <code>Een jong kind rijdt op een paard.</code> | <code>Een kind rijdt op een paard.</code> | <code>0.949999988079071</code> |
764
+ | <code>Een man voedt een muis aan een slang.</code> | <code>De man voert een muis aan de slang.</code> | <code>1.0</code> |
765
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
766
+ ```json
767
+ {
768
+ "scale": 20.0,
769
+ "similarity_fct": "pairwise_cos_sim"
770
+ }
771
+ ```
772
+ </details>
773
+ <details><summary>multi_stsb_pl</summary>
774
+
775
+ #### multi_stsb_pl
776
+
777
+ * Dataset: [multi_stsb_pl](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
778
+ * Size: 1,500 evaluation samples
779
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
780
+ * Approximate statistics based on the first 1000 samples:
781
+ | | sentence1 | sentence2 | score |
782
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
783
+ | type | string | string | float |
784
+ | details | <ul><li>min: 6 tokens</li><li>mean: 18.54 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 18.43 tokens</li><li>max: 54 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.42</li><li>max: 1.0</li></ul> |
785
+ * Samples:
786
+ | sentence1 | sentence2 | score |
787
+ |:---------------------------------------------------|:---------------------------------------------------|:-------------------------------|
788
+ | <code>Tańczy mężczyzna w twardym kapeluszu.</code> | <code>Tańczy mężczyzna w twardym kapeluszu.</code> | <code>1.0</code> |
789
+ | <code>Małe dziecko jedzie na koniu.</code> | <code>Dziecko jedzie na koniu.</code> | <code>0.949999988079071</code> |
790
+ | <code>Człowiek karmi węża myszką.</code> | <code>Ten człowiek karmi węża myszką.</code> | <code>1.0</code> |
791
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
792
+ ```json
793
+ {
794
+ "scale": 20.0,
795
+ "similarity_fct": "pairwise_cos_sim"
796
+ }
797
+ ```
798
+ </details>
799
+ <details><summary>multi_stsb_pt</summary>
800
+
801
+ #### multi_stsb_pt
802
+
803
+ * Dataset: [multi_stsb_pt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
804
+ * Size: 1,500 evaluation samples
805
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
806
+ * Approximate statistics based on the first 1000 samples:
807
+ | | sentence1 | sentence2 | score |
808
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
809
+ | type | string | string | float |
810
+ | details | <ul><li>min: 7 tokens</li><li>mean: 18.22 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 18.11 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.42</li><li>max: 1.0</li></ul> |
811
+ * Samples:
812
+ | sentence1 | sentence2 | score |
813
+ |:------------------------------------------------------------|:-----------------------------------------------------------|:-------------------------------|
814
+ | <code>Um homem de chapéu duro está a dançar.</code> | <code>Um homem com um capacete está a dançar.</code> | <code>1.0</code> |
815
+ | <code>Uma criança pequena está a montar a cavalo.</code> | <code>Uma criança está a montar a cavalo.</code> | <code>0.949999988079071</code> |
816
+ | <code>Um homem está a alimentar um rato a uma cobra.</code> | <code>O homem está a alimentar a cobra com um rato.</code> | <code>1.0</code> |
817
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
818
+ ```json
819
+ {
820
+ "scale": 20.0,
821
+ "similarity_fct": "pairwise_cos_sim"
822
+ }
823
+ ```
824
+ </details>
825
+ <details><summary>multi_stsb_ru</summary>
826
+
827
+ #### multi_stsb_ru
828
+
829
+ * Dataset: [multi_stsb_ru](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
830
+ * Size: 1,500 evaluation samples
831
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
832
+ * Approximate statistics based on the first 1000 samples:
833
+ | | sentence1 | sentence2 | score |
834
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
835
+ | type | string | string | float |
836
+ | details | <ul><li>min: 6 tokens</li><li>mean: 17.92 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 17.75 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.42</li><li>max: 1.0</li></ul> |
837
+ * Samples:
838
+ | sentence1 | sentence2 | score |
839
+ |:------------------------------------------------------|:----------------------------------------------|:-------------------------------|
840
+ | <code>Человек в твердой шляпе танцует.</code> | <code>Мужчина в твердой шляпе танцует.</code> | <code>1.0</code> |
841
+ | <code>Маленький ребенок едет верхом на лошади.</code> | <code>Ребенок едет на лошади.</code> | <code>0.949999988079071</code> |
842
+ | <code>Мужчина кормит мышь змее.</code> | <code>Человек кормит змею мышью.</code> | <code>1.0</code> |
843
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
844
+ ```json
845
+ {
846
+ "scale": 20.0,
847
+ "similarity_fct": "pairwise_cos_sim"
848
+ }
849
+ ```
850
+ </details>
851
+ <details><summary>multi_stsb_zh</summary>
852
+
853
+ #### multi_stsb_zh
854
+
855
+ * Dataset: [multi_stsb_zh](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
856
+ * Size: 1,500 evaluation samples
857
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
858
+ * Approximate statistics based on the first 1000 samples:
859
+ | | sentence1 | sentence2 | score |
860
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
861
+ | type | string | string | float |
862
+ | details | <ul><li>min: 6 tokens</li><li>mean: 15.37 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 15.24 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.42</li><li>max: 1.0</li></ul> |
863
+ * Samples:
864
+ | sentence1 | sentence2 | score |
865
+ |:---------------------------|:--------------------------|:-------------------------------|
866
+ | <code>一个戴着硬帽子的人在跳舞。</code> | <code>一个戴着硬帽的人在跳舞。</code> | <code>1.0</code> |
867
+ | <code>一个小孩子在骑马。</code> | <code>一个孩子在骑马。</code> | <code>0.949999988079071</code> |
868
+ | <code>一个人正在用老鼠喂蛇。</code> | <code>那人正在给蛇喂老鼠。</code> | <code>1.0</code> |
869
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
870
+ ```json
871
+ {
872
+ "scale": 20.0,
873
+ "similarity_fct": "pairwise_cos_sim"
874
+ }
875
+ ```
876
+ </details>
877
+
878
+ ### Training Hyperparameters
879
+ #### Non-Default Hyperparameters
880
+
881
+ - `eval_strategy`: steps
882
+ - `per_device_train_batch_size`: 16
883
+ - `per_device_eval_batch_size`: 16
884
+ - `num_train_epochs`: 4
885
+ - `warmup_ratio`: 0.1
886
+
887
+ #### All Hyperparameters
888
+ <details><summary>Click to expand</summary>
889
+
890
+ - `overwrite_output_dir`: False
891
+ - `do_predict`: False
892
+ - `eval_strategy`: steps
893
+ - `prediction_loss_only`: True
894
+ - `per_device_train_batch_size`: 16
895
+ - `per_device_eval_batch_size`: 16
896
+ - `per_gpu_train_batch_size`: None
897
+ - `per_gpu_eval_batch_size`: None
898
+ - `gradient_accumulation_steps`: 1
899
+ - `eval_accumulation_steps`: None
900
+ - `torch_empty_cache_steps`: None
901
+ - `learning_rate`: 5e-05
902
+ - `weight_decay`: 0.0
903
+ - `adam_beta1`: 0.9
904
+ - `adam_beta2`: 0.999
905
+ - `adam_epsilon`: 1e-08
906
+ - `max_grad_norm`: 1.0
907
+ - `num_train_epochs`: 4
908
+ - `max_steps`: -1
909
+ - `lr_scheduler_type`: linear
910
+ - `lr_scheduler_kwargs`: {}
911
+ - `warmup_ratio`: 0.1
912
+ - `warmup_steps`: 0
913
+ - `log_level`: passive
914
+ - `log_level_replica`: warning
915
+ - `log_on_each_node`: True
916
+ - `logging_nan_inf_filter`: True
917
+ - `save_safetensors`: True
918
+ - `save_on_each_node`: False
919
+ - `save_only_model`: False
920
+ - `restore_callback_states_from_checkpoint`: False
921
+ - `no_cuda`: False
922
+ - `use_cpu`: False
923
+ - `use_mps_device`: False
924
+ - `seed`: 42
925
+ - `data_seed`: None
926
+ - `jit_mode_eval`: False
927
+ - `use_ipex`: False
928
+ - `bf16`: False
929
+ - `fp16`: False
930
+ - `fp16_opt_level`: O1
931
+ - `half_precision_backend`: auto
932
+ - `bf16_full_eval`: False
933
+ - `fp16_full_eval`: False
934
+ - `tf32`: None
935
+ - `local_rank`: 0
936
+ - `ddp_backend`: None
937
+ - `tpu_num_cores`: None
938
+ - `tpu_metrics_debug`: False
939
+ - `debug`: []
940
+ - `dataloader_drop_last`: False
941
+ - `dataloader_num_workers`: 0
942
+ - `dataloader_prefetch_factor`: None
943
+ - `past_index`: -1
944
+ - `disable_tqdm`: False
945
+ - `remove_unused_columns`: True
946
+ - `label_names`: None
947
+ - `load_best_model_at_end`: False
948
+ - `ignore_data_skip`: False
949
+ - `fsdp`: []
950
+ - `fsdp_min_num_params`: 0
951
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
952
+ - `fsdp_transformer_layer_cls_to_wrap`: None
953
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
954
+ - `deepspeed`: None
955
+ - `label_smoothing_factor`: 0.0
956
+ - `optim`: adamw_torch
957
+ - `optim_args`: None
958
+ - `adafactor`: False
959
+ - `group_by_length`: False
960
+ - `length_column_name`: length
961
+ - `ddp_find_unused_parameters`: None
962
+ - `ddp_bucket_cap_mb`: None
963
+ - `ddp_broadcast_buffers`: False
964
+ - `dataloader_pin_memory`: True
965
+ - `dataloader_persistent_workers`: False
966
+ - `skip_memory_metrics`: True
967
+ - `use_legacy_prediction_loop`: False
968
+ - `push_to_hub`: False
969
+ - `resume_from_checkpoint`: None
970
+ - `hub_model_id`: None
971
+ - `hub_strategy`: every_save
972
+ - `hub_private_repo`: None
973
+ - `hub_always_push`: False
974
+ - `gradient_checkpointing`: False
975
+ - `gradient_checkpointing_kwargs`: None
976
+ - `include_inputs_for_metrics`: False
977
+ - `include_for_metrics`: []
978
+ - `eval_do_concat_batches`: True
979
+ - `fp16_backend`: auto
980
+ - `push_to_hub_model_id`: None
981
+ - `push_to_hub_organization`: None
982
+ - `mp_parameters`:
983
+ - `auto_find_batch_size`: False
984
+ - `full_determinism`: False
985
+ - `torchdynamo`: None
986
+ - `ray_scope`: last
987
+ - `ddp_timeout`: 1800
988
+ - `torch_compile`: False
989
+ - `torch_compile_backend`: None
990
+ - `torch_compile_mode`: None
991
+ - `dispatch_batches`: None
992
+ - `split_batches`: None
993
+ - `include_tokens_per_second`: False
994
+ - `include_num_input_tokens_seen`: False
995
+ - `neftune_noise_alpha`: None
996
+ - `optim_target_modules`: None
997
+ - `batch_eval_metrics`: False
998
+ - `eval_on_start`: False
999
+ - `use_liger_kernel`: False
1000
+ - `eval_use_gather_object`: False
1001
+ - `average_tokens_across_devices`: False
1002
+ - `prompts`: None
1003
+ - `batch_sampler`: batch_sampler
1004
+ - `multi_dataset_batch_sampler`: proportional
1005
+
1006
+ </details>
1007
+
1008
+ ### Training Logs
1009
+ | Epoch | Step | Training Loss | multi stsb de loss | multi stsb es loss | multi stsb fr loss | multi stsb it loss | multi stsb nl loss | multi stsb pl loss | multi stsb pt loss | multi stsb ru loss | multi stsb zh loss | sts-eval_spearman_cosine | sts-test_spearman_cosine |
1010
+ |:-----:|:-----:|:-------------:|:------------------:|:------------------:|:------------------:|:------------------:|:------------------:|:------------------:|:------------------:|:------------------:|:------------------:|:------------------------:|:------------------------:|
1011
+ | 4.0 | 12960 | 3.7859 | 6.5030 | 6.5739 | 6.7230 | 6.8049 | 6.6585 | 6.8389 | 6.6333 | 6.7102 | 6.3148 | 0.8611 | - |
1012
+ | -1 | -1 | - | - | - | - | - | - | - | - | - | - | - | 0.7878 |
1013
+
1014
+
1015
+ ### Framework Versions
1016
+ - Python: 3.10.13
1017
+ - Sentence Transformers: 3.4.1
1018
+ - Transformers: 4.48.2
1019
+ - PyTorch: 2.1.2+cu121
1020
+ - Accelerate: 1.3.0
1021
+ - Datasets: 2.16.1
1022
+ - Tokenizers: 0.21.0
1023
+
1024
+ ## Citation
1025
+
1026
+ ### BibTeX
1027
+
1028
+ #### Sentence Transformers
1029
+ ```bibtex
1030
+ @inproceedings{reimers-2019-sentence-bert,
1031
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
1032
+ author = "Reimers, Nils and Gurevych, Iryna",
1033
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
1034
+ month = "11",
1035
+ year = "2019",
1036
+ publisher = "Association for Computational Linguistics",
1037
+ url = "https://arxiv.org/abs/1908.10084",
1038
+ }
1039
+ ```
1040
+
1041
+ #### CoSENTLoss
1042
+ ```bibtex
1043
+ @online{kexuefm-8847,
1044
+ title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
1045
+ author={Su Jianlin},
1046
+ year={2022},
1047
+ month={Jan},
1048
+ url={https://kexue.fm/archives/8847},
1049
+ }
1050
+ ```
1051
+
1052
+ <!--
1053
+ ## Glossary
1054
+
1055
+ *Clearly define terms in order to be accessible across audiences.*
1056
+ -->
1057
+
1058
+ <!--
1059
+ ## Model Card Authors
1060
+
1061
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
1062
+ -->
1063
+
1064
+ <!--
1065
+ ## Model Card Contact
1066
+
1067
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
1068
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/paraphrase-multilingual-mpnet-base-v2",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "xlm-roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "output_past": true,
22
+ "pad_token_id": 1,
23
+ "position_embedding_type": "absolute",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.48.2",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 250002
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.48.2",
5
+ "pytorch": "2.1.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7ca61d97fdd9c136afb7c2357e35a7fc199ad118b4846587726e5e51bdabc492
3
+ size 1112197096
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_MultiHeadGeneralizedPooling",
12
+ "type": "sentence_generalized_pooling.multihead_generalized_pooling.MultiHeadGeneralizedPooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "extra_special_tokens": {},
49
+ "mask_token": "<mask>",
50
+ "max_length": 128,
51
+ "model_max_length": 128,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "<pad>",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "</s>",
57
+ "stride": 0,
58
+ "tokenizer_class": "XLMRobertaTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "<unk>"
62
+ }