Add new SentenceTransformer model
Browse files- .gitattributes +1 -0
- 1_MultiHeadGeneralizedPooling/config.json +7 -0
- 1_MultiHeadGeneralizedPooling/multihead_pooling_weights.pt +3 -0
- README.md +1068 -0
- config.json +29 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +51 -0
- tokenizer.json +3 -0
- tokenizer_config.json +62 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
1_MultiHeadGeneralizedPooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"sentence_dim": 768,
|
3 |
+
"token_dim": 768,
|
4 |
+
"num_heads": 8,
|
5 |
+
"initialize": 1,
|
6 |
+
"pooling_type": 0
|
7 |
+
}
|
1_MultiHeadGeneralizedPooling/multihead_pooling_weights.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:46ce104b9abfcdb4a59f949024c3d2d823885b3d893aea23b6218c334731b882
|
3 |
+
size 4726278
|
README.md
ADDED
@@ -0,0 +1,1068 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- de
|
4 |
+
- en
|
5 |
+
- es
|
6 |
+
- fr
|
7 |
+
- it
|
8 |
+
- nl
|
9 |
+
- pl
|
10 |
+
- pt
|
11 |
+
- ru
|
12 |
+
- zh
|
13 |
+
tags:
|
14 |
+
- sentence-transformers
|
15 |
+
- sentence-similarity
|
16 |
+
- feature-extraction
|
17 |
+
- generated_from_trainer
|
18 |
+
- dataset_size:51741
|
19 |
+
- loss:CoSENTLoss
|
20 |
+
base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
|
21 |
+
widget:
|
22 |
+
- source_sentence: Starsza para azjatycka pozuje z noworodkiem przy stole obiadowym.
|
23 |
+
sentences:
|
24 |
+
- Koszykarz ma zamiar zdobyć punkty dla swojej drużyny.
|
25 |
+
- Grupa starszych osób pozuje wokół stołu w jadalni.
|
26 |
+
- Możliwe, że układ słoneczny taki jak nasz może istnieć poza galaktyką.
|
27 |
+
- source_sentence: Englisch arbeitet überall mit Menschen, die Dinge kaufen und verkaufen,
|
28 |
+
und in der Gastfreundschaft und im Tourismusgeschäft.
|
29 |
+
sentences:
|
30 |
+
- Ich bin in Maharashtra (einschließlich Mumbai) und Andhra Pradesh herumgereist,
|
31 |
+
und ich hatte kein Problem damit, nur mit Englisch auszukommen.
|
32 |
+
- 'Ein griechischsprachiger Sklave (δούλος, doulos) würde seinen Herrn, glaube ich,
|
33 |
+
κύριος nennen (translit: kurios; Herr, Herr, Herr, Herr; Vokativform: κύριε).'
|
34 |
+
- Das Paar lag auf dem Bett.
|
35 |
+
- source_sentence: Si vous vous comprenez et comprenez votre ennemi, vous aurez beaucoup
|
36 |
+
plus de chances de gagner n'importe quelle bataille.
|
37 |
+
sentences:
|
38 |
+
- 'Outre les probabilités de gagner une bataille théorique, cette citation a une
|
39 |
+
autre signification : l''importance de connaître/comprendre les autres.'
|
40 |
+
- Une femme et un chien se promènent ensemble.
|
41 |
+
- Un homme joue de la guitare.
|
42 |
+
- source_sentence: Un homme joue de la harpe.
|
43 |
+
sentences:
|
44 |
+
- Une femme joue de la guitare.
|
45 |
+
- une femme a un enfant.
|
46 |
+
- Un groupe de personnes est debout et assis sur le sol la nuit.
|
47 |
+
- source_sentence: Dois cães a lutar na neve.
|
48 |
+
sentences:
|
49 |
+
- Dois cães brincam na neve.
|
50 |
+
- Pode sempre perguntar, então é a escolha do autor a aceitar ou não.
|
51 |
+
- Um gato está a caminhar sobre chão de madeira dura.
|
52 |
+
datasets:
|
53 |
+
- PhilipMay/stsb_multi_mt
|
54 |
+
pipeline_tag: sentence-similarity
|
55 |
+
library_name: sentence-transformers
|
56 |
+
metrics:
|
57 |
+
- pearson_cosine
|
58 |
+
- spearman_cosine
|
59 |
+
model-index:
|
60 |
+
- name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
|
61 |
+
results:
|
62 |
+
- task:
|
63 |
+
type: semantic-similarity
|
64 |
+
name: Semantic Similarity
|
65 |
+
dataset:
|
66 |
+
name: sts eval
|
67 |
+
type: sts-eval
|
68 |
+
metrics:
|
69 |
+
- type: pearson_cosine
|
70 |
+
value: 0.8423180648713237
|
71 |
+
name: Pearson Cosine
|
72 |
+
- type: spearman_cosine
|
73 |
+
value: 0.8595850000432059
|
74 |
+
name: Spearman Cosine
|
75 |
+
- type: pearson_cosine
|
76 |
+
value: 0.8420181975402647
|
77 |
+
name: Pearson Cosine
|
78 |
+
- type: spearman_cosine
|
79 |
+
value: 0.8630073561241816
|
80 |
+
name: Spearman Cosine
|
81 |
+
- type: pearson_cosine
|
82 |
+
value: 0.8405171361303234
|
83 |
+
name: Pearson Cosine
|
84 |
+
- type: spearman_cosine
|
85 |
+
value: 0.8594948677596693
|
86 |
+
name: Spearman Cosine
|
87 |
+
- type: pearson_cosine
|
88 |
+
value: 0.8375312155777364
|
89 |
+
name: Pearson Cosine
|
90 |
+
- type: spearman_cosine
|
91 |
+
value: 0.8583531749722014
|
92 |
+
name: Spearman Cosine
|
93 |
+
- type: pearson_cosine
|
94 |
+
value: 0.8397619344296936
|
95 |
+
name: Pearson Cosine
|
96 |
+
- type: spearman_cosine
|
97 |
+
value: 0.8592894281053397
|
98 |
+
name: Spearman Cosine
|
99 |
+
- type: pearson_cosine
|
100 |
+
value: 0.8302450119489335
|
101 |
+
name: Pearson Cosine
|
102 |
+
- type: spearman_cosine
|
103 |
+
value: 0.8477495437950113
|
104 |
+
name: Spearman Cosine
|
105 |
+
- type: pearson_cosine
|
106 |
+
value: 0.8403036335437926
|
107 |
+
name: Pearson Cosine
|
108 |
+
- type: spearman_cosine
|
109 |
+
value: 0.8618318944578455
|
110 |
+
name: Spearman Cosine
|
111 |
+
- type: pearson_cosine
|
112 |
+
value: 0.838706056263606
|
113 |
+
name: Pearson Cosine
|
114 |
+
- type: spearman_cosine
|
115 |
+
value: 0.8574971366611375
|
116 |
+
name: Spearman Cosine
|
117 |
+
- type: pearson_cosine
|
118 |
+
value: 0.8413052113094718
|
119 |
+
name: Pearson Cosine
|
120 |
+
- type: spearman_cosine
|
121 |
+
value: 0.8611085200053895
|
122 |
+
name: Spearman Cosine
|
123 |
+
- task:
|
124 |
+
type: semantic-similarity
|
125 |
+
name: Semantic Similarity
|
126 |
+
dataset:
|
127 |
+
name: sts test
|
128 |
+
type: sts-test
|
129 |
+
metrics:
|
130 |
+
- type: pearson_cosine
|
131 |
+
value: 0.7456938524838218
|
132 |
+
name: Pearson Cosine
|
133 |
+
- type: spearman_cosine
|
134 |
+
value: 0.7483592546028903
|
135 |
+
name: Spearman Cosine
|
136 |
+
- type: pearson_cosine
|
137 |
+
value: 0.7237526314017121
|
138 |
+
name: Pearson Cosine
|
139 |
+
- type: spearman_cosine
|
140 |
+
value: 0.7169355021670776
|
141 |
+
name: Spearman Cosine
|
142 |
+
- type: pearson_cosine
|
143 |
+
value: 0.7669235794906317
|
144 |
+
name: Pearson Cosine
|
145 |
+
- type: spearman_cosine
|
146 |
+
value: 0.7631313253470643
|
147 |
+
name: Spearman Cosine
|
148 |
+
- type: pearson_cosine
|
149 |
+
value: 0.8298244150963187
|
150 |
+
name: Pearson Cosine
|
151 |
+
- type: spearman_cosine
|
152 |
+
value: 0.8324038122126458
|
153 |
+
name: Spearman Cosine
|
154 |
+
- type: pearson_cosine
|
155 |
+
value: 0.7166564070706897
|
156 |
+
name: Pearson Cosine
|
157 |
+
- type: spearman_cosine
|
158 |
+
value: 0.7227801582959456
|
159 |
+
name: Spearman Cosine
|
160 |
+
- type: pearson_cosine
|
161 |
+
value: 0.7855295239932334
|
162 |
+
name: Pearson Cosine
|
163 |
+
- type: spearman_cosine
|
164 |
+
value: 0.7934626158625494
|
165 |
+
name: Spearman Cosine
|
166 |
+
- type: pearson_cosine
|
167 |
+
value: 0.8386050236111093
|
168 |
+
name: Pearson Cosine
|
169 |
+
- type: spearman_cosine
|
170 |
+
value: 0.8275901416546908
|
171 |
+
name: Spearman Cosine
|
172 |
+
- type: pearson_cosine
|
173 |
+
value: 0.779112011887379
|
174 |
+
name: Pearson Cosine
|
175 |
+
- type: spearman_cosine
|
176 |
+
value: 0.7729611139511264
|
177 |
+
name: Spearman Cosine
|
178 |
+
- type: pearson_cosine
|
179 |
+
value: 0.7878478906763803
|
180 |
+
name: Pearson Cosine
|
181 |
+
- type: spearman_cosine
|
182 |
+
value: 0.7846990470347196
|
183 |
+
name: Spearman Cosine
|
184 |
+
- type: pearson_cosine
|
185 |
+
value: 0.7882844791307567
|
186 |
+
name: Pearson Cosine
|
187 |
+
- type: spearman_cosine
|
188 |
+
value: 0.7878180406501333
|
189 |
+
name: Spearman Cosine
|
190 |
+
---
|
191 |
+
|
192 |
+
# SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
|
193 |
+
|
194 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) on the [multi_stsb_de](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt), [multi_stsb_es](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt), [multi_stsb_fr](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt), [multi_stsb_it](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt), [multi_stsb_nl](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt), [multi_stsb_pl](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt), [multi_stsb_pt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt), [multi_stsb_ru](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) and [multi_stsb_zh](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
195 |
+
|
196 |
+
## Model Details
|
197 |
+
|
198 |
+
### Model Description
|
199 |
+
- **Model Type:** Sentence Transformer
|
200 |
+
- **Base model:** [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) <!-- at revision 84fccfe766bcfd679e39efefe4ebf45af190ad2d -->
|
201 |
+
- **Maximum Sequence Length:** 128 tokens
|
202 |
+
- **Output Dimensionality:** 768 dimensions
|
203 |
+
- **Similarity Function:** Cosine Similarity
|
204 |
+
- **Training Datasets:**
|
205 |
+
- [multi_stsb_de](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
|
206 |
+
- [multi_stsb_es](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
|
207 |
+
- [multi_stsb_fr](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
|
208 |
+
- [multi_stsb_it](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
|
209 |
+
- [multi_stsb_nl](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
|
210 |
+
- [multi_stsb_pl](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
|
211 |
+
- [multi_stsb_pt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
|
212 |
+
- [multi_stsb_ru](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
|
213 |
+
- [multi_stsb_zh](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
|
214 |
+
- **Languages:** de, en, es, fr, it, nl, pl, pt, ru, zh
|
215 |
+
<!-- - **License:** Unknown -->
|
216 |
+
|
217 |
+
### Model Sources
|
218 |
+
|
219 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
220 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
221 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
222 |
+
|
223 |
+
### Full Model Architecture
|
224 |
+
|
225 |
+
```
|
226 |
+
SentenceTransformer(
|
227 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
|
228 |
+
(1): MultiHeadGeneralizedPooling(
|
229 |
+
(P): ModuleList(
|
230 |
+
(0-7): 8 x Linear(in_features=768, out_features=96, bias=True)
|
231 |
+
)
|
232 |
+
(W1): ModuleList(
|
233 |
+
(0-7): 8 x Linear(in_features=96, out_features=384, bias=True)
|
234 |
+
)
|
235 |
+
(W2): ModuleList(
|
236 |
+
(0-7): 8 x Linear(in_features=384, out_features=96, bias=True)
|
237 |
+
)
|
238 |
+
)
|
239 |
+
)
|
240 |
+
```
|
241 |
+
|
242 |
+
## Usage
|
243 |
+
|
244 |
+
### Direct Usage (Sentence Transformers)
|
245 |
+
|
246 |
+
First install the Sentence Transformers library:
|
247 |
+
|
248 |
+
```bash
|
249 |
+
pip install -U sentence-transformers
|
250 |
+
```
|
251 |
+
|
252 |
+
Then you can load this model and run inference.
|
253 |
+
```python
|
254 |
+
from sentence_transformers import SentenceTransformer
|
255 |
+
|
256 |
+
# Download from the 🤗 Hub
|
257 |
+
model = SentenceTransformer("RomainDarous/large_directFourEpoch_additivePooling_noisedInit_stsModel")
|
258 |
+
# Run inference
|
259 |
+
sentences = [
|
260 |
+
'Dois cães a lutar na neve.',
|
261 |
+
'Dois cães brincam na neve.',
|
262 |
+
'Pode sempre perguntar, então é a escolha do autor a aceitar ou não.',
|
263 |
+
]
|
264 |
+
embeddings = model.encode(sentences)
|
265 |
+
print(embeddings.shape)
|
266 |
+
# [3, 768]
|
267 |
+
|
268 |
+
# Get the similarity scores for the embeddings
|
269 |
+
similarities = model.similarity(embeddings, embeddings)
|
270 |
+
print(similarities.shape)
|
271 |
+
# [3, 3]
|
272 |
+
```
|
273 |
+
|
274 |
+
<!--
|
275 |
+
### Direct Usage (Transformers)
|
276 |
+
|
277 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
278 |
+
|
279 |
+
</details>
|
280 |
+
-->
|
281 |
+
|
282 |
+
<!--
|
283 |
+
### Downstream Usage (Sentence Transformers)
|
284 |
+
|
285 |
+
You can finetune this model on your own dataset.
|
286 |
+
|
287 |
+
<details><summary>Click to expand</summary>
|
288 |
+
|
289 |
+
</details>
|
290 |
+
-->
|
291 |
+
|
292 |
+
<!--
|
293 |
+
### Out-of-Scope Use
|
294 |
+
|
295 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
296 |
+
-->
|
297 |
+
|
298 |
+
## Evaluation
|
299 |
+
|
300 |
+
### Metrics
|
301 |
+
|
302 |
+
#### Semantic Similarity
|
303 |
+
|
304 |
+
* Datasets: `sts-eval`, `sts-test`, `sts-test`, `sts-test`, `sts-test`, `sts-test`, `sts-test`, `sts-test`, `sts-test`, `sts-test` and `sts-test`
|
305 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
306 |
+
|
307 |
+
| Metric | sts-eval | sts-test |
|
308 |
+
|:--------------------|:-----------|:-----------|
|
309 |
+
| pearson_cosine | 0.8423 | 0.7883 |
|
310 |
+
| **spearman_cosine** | **0.8596** | **0.7878** |
|
311 |
+
|
312 |
+
#### Semantic Similarity
|
313 |
+
|
314 |
+
* Dataset: `sts-eval`
|
315 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
316 |
+
|
317 |
+
| Metric | Value |
|
318 |
+
|:--------------------|:----------|
|
319 |
+
| pearson_cosine | 0.842 |
|
320 |
+
| **spearman_cosine** | **0.863** |
|
321 |
+
|
322 |
+
#### Semantic Similarity
|
323 |
+
|
324 |
+
* Dataset: `sts-eval`
|
325 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
326 |
+
|
327 |
+
| Metric | Value |
|
328 |
+
|:--------------------|:-----------|
|
329 |
+
| pearson_cosine | 0.8405 |
|
330 |
+
| **spearman_cosine** | **0.8595** |
|
331 |
+
|
332 |
+
#### Semantic Similarity
|
333 |
+
|
334 |
+
* Dataset: `sts-eval`
|
335 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
336 |
+
|
337 |
+
| Metric | Value |
|
338 |
+
|:--------------------|:-----------|
|
339 |
+
| pearson_cosine | 0.8375 |
|
340 |
+
| **spearman_cosine** | **0.8584** |
|
341 |
+
|
342 |
+
#### Semantic Similarity
|
343 |
+
|
344 |
+
* Dataset: `sts-eval`
|
345 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
346 |
+
|
347 |
+
| Metric | Value |
|
348 |
+
|:--------------------|:-----------|
|
349 |
+
| pearson_cosine | 0.8398 |
|
350 |
+
| **spearman_cosine** | **0.8593** |
|
351 |
+
|
352 |
+
#### Semantic Similarity
|
353 |
+
|
354 |
+
* Dataset: `sts-eval`
|
355 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
356 |
+
|
357 |
+
| Metric | Value |
|
358 |
+
|:--------------------|:-----------|
|
359 |
+
| pearson_cosine | 0.8302 |
|
360 |
+
| **spearman_cosine** | **0.8477** |
|
361 |
+
|
362 |
+
#### Semantic Similarity
|
363 |
+
|
364 |
+
* Dataset: `sts-eval`
|
365 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
366 |
+
|
367 |
+
| Metric | Value |
|
368 |
+
|:--------------------|:-----------|
|
369 |
+
| pearson_cosine | 0.8403 |
|
370 |
+
| **spearman_cosine** | **0.8618** |
|
371 |
+
|
372 |
+
#### Semantic Similarity
|
373 |
+
|
374 |
+
* Dataset: `sts-eval`
|
375 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
376 |
+
|
377 |
+
| Metric | Value |
|
378 |
+
|:--------------------|:-----------|
|
379 |
+
| pearson_cosine | 0.8387 |
|
380 |
+
| **spearman_cosine** | **0.8575** |
|
381 |
+
|
382 |
+
#### Semantic Similarity
|
383 |
+
|
384 |
+
* Dataset: `sts-eval`
|
385 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
386 |
+
|
387 |
+
| Metric | Value |
|
388 |
+
|:--------------------|:-----------|
|
389 |
+
| pearson_cosine | 0.8413 |
|
390 |
+
| **spearman_cosine** | **0.8611** |
|
391 |
+
|
392 |
+
<!--
|
393 |
+
## Bias, Risks and Limitations
|
394 |
+
|
395 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
396 |
+
-->
|
397 |
+
|
398 |
+
<!--
|
399 |
+
### Recommendations
|
400 |
+
|
401 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
402 |
+
-->
|
403 |
+
|
404 |
+
## Training Details
|
405 |
+
|
406 |
+
### Training Datasets
|
407 |
+
<details><summary>multi_stsb_de</summary>
|
408 |
+
|
409 |
+
#### multi_stsb_de
|
410 |
+
|
411 |
+
* Dataset: [multi_stsb_de](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
|
412 |
+
* Size: 5,749 training samples
|
413 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
414 |
+
* Approximate statistics based on the first 1000 samples:
|
415 |
+
| | sentence1 | sentence2 | score |
|
416 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
417 |
+
| type | string | string | float |
|
418 |
+
| details | <ul><li>min: 5 tokens</li><li>mean: 11.58 tokens</li><li>max: 37 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.53 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> |
|
419 |
+
* Samples:
|
420 |
+
| sentence1 | sentence2 | score |
|
421 |
+
|:---------------------------------------------------------------|:--------------------------------------------------------------------------|:--------------------------------|
|
422 |
+
| <code>Ein Flugzeug hebt gerade ab.</code> | <code>Ein Flugzeug hebt gerade ab.</code> | <code>1.0</code> |
|
423 |
+
| <code>Ein Mann spielt eine große Flöte.</code> | <code>Ein Mann spielt eine Flöte.</code> | <code>0.7599999904632568</code> |
|
424 |
+
| <code>Ein Mann streicht geriebenen Käse auf eine Pizza.</code> | <code>Ein Mann streicht geriebenen Käse auf eine ungekochte Pizza.</code> | <code>0.7599999904632568</code> |
|
425 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
426 |
+
```json
|
427 |
+
{
|
428 |
+
"scale": 20.0,
|
429 |
+
"similarity_fct": "pairwise_cos_sim"
|
430 |
+
}
|
431 |
+
```
|
432 |
+
</details>
|
433 |
+
<details><summary>multi_stsb_es</summary>
|
434 |
+
|
435 |
+
#### multi_stsb_es
|
436 |
+
|
437 |
+
* Dataset: [multi_stsb_es](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
|
438 |
+
* Size: 5,749 training samples
|
439 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
440 |
+
* Approximate statistics based on the first 1000 samples:
|
441 |
+
| | sentence1 | sentence2 | score |
|
442 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
443 |
+
| type | string | string | float |
|
444 |
+
| details | <ul><li>min: 7 tokens</li><li>mean: 12.21 tokens</li><li>max: 33 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 12.07 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> |
|
445 |
+
* Samples:
|
446 |
+
| sentence1 | sentence2 | score |
|
447 |
+
|:----------------------------------------------------------------|:----------------------------------------------------------------------|:--------------------------------|
|
448 |
+
| <code>Un avión está despegando.</code> | <code>Un avión está despegando.</code> | <code>1.0</code> |
|
449 |
+
| <code>Un hombre está tocando una gran flauta.</code> | <code>Un hombre está tocando una flauta.</code> | <code>0.7599999904632568</code> |
|
450 |
+
| <code>Un hombre está untando queso rallado en una pizza.</code> | <code>Un hombre está untando queso rallado en una pizza cruda.</code> | <code>0.7599999904632568</code> |
|
451 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
452 |
+
```json
|
453 |
+
{
|
454 |
+
"scale": 20.0,
|
455 |
+
"similarity_fct": "pairwise_cos_sim"
|
456 |
+
}
|
457 |
+
```
|
458 |
+
</details>
|
459 |
+
<details><summary>multi_stsb_fr</summary>
|
460 |
+
|
461 |
+
#### multi_stsb_fr
|
462 |
+
|
463 |
+
* Dataset: [multi_stsb_fr](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
|
464 |
+
* Size: 5,749 training samples
|
465 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
466 |
+
* Approximate statistics based on the first 1000 samples:
|
467 |
+
| | sentence1 | sentence2 | score |
|
468 |
+
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
469 |
+
| type | string | string | float |
|
470 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 12.6 tokens</li><li>max: 33 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.49 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> |
|
471 |
+
* Samples:
|
472 |
+
| sentence1 | sentence2 | score |
|
473 |
+
|:-----------------------------------------------------------|:---------------------------------------------------------------------|:--------------------------------|
|
474 |
+
| <code>Un avion est en train de décoller.</code> | <code>Un avion est en train de décoller.</code> | <code>1.0</code> |
|
475 |
+
| <code>Un homme joue d'une grande flûte.</code> | <code>Un homme joue de la flûte.</code> | <code>0.7599999904632568</code> |
|
476 |
+
| <code>Un homme étale du fromage râpé sur une pizza.</code> | <code>Un homme étale du fromage râpé sur une pizza non cuite.</code> | <code>0.7599999904632568</code> |
|
477 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
478 |
+
```json
|
479 |
+
{
|
480 |
+
"scale": 20.0,
|
481 |
+
"similarity_fct": "pairwise_cos_sim"
|
482 |
+
}
|
483 |
+
```
|
484 |
+
</details>
|
485 |
+
<details><summary>multi_stsb_it</summary>
|
486 |
+
|
487 |
+
#### multi_stsb_it
|
488 |
+
|
489 |
+
* Dataset: [multi_stsb_it](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
|
490 |
+
* Size: 5,749 training samples
|
491 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
492 |
+
* Approximate statistics based on the first 1000 samples:
|
493 |
+
| | sentence1 | sentence2 | score |
|
494 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
495 |
+
| type | string | string | float |
|
496 |
+
| details | <ul><li>min: 7 tokens</li><li>mean: 12.77 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 12.69 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> |
|
497 |
+
* Samples:
|
498 |
+
| sentence1 | sentence2 | score |
|
499 |
+
|:--------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:--------------------------------|
|
500 |
+
| <code>Un aereo sta decollando.</code> | <code>Un aereo sta decollando.</code> | <code>1.0</code> |
|
501 |
+
| <code>Un uomo sta suonando un grande flauto.</code> | <code>Un uomo sta suonando un flauto.</code> | <code>0.7599999904632568</code> |
|
502 |
+
| <code>Un uomo sta spalmando del formaggio a pezzetti su una pizza.</code> | <code>Un uomo sta spalmando del formaggio a pezzetti su una pizza non cotta.</code> | <code>0.7599999904632568</code> |
|
503 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
504 |
+
```json
|
505 |
+
{
|
506 |
+
"scale": 20.0,
|
507 |
+
"similarity_fct": "pairwise_cos_sim"
|
508 |
+
}
|
509 |
+
```
|
510 |
+
</details>
|
511 |
+
<details><summary>multi_stsb_nl</summary>
|
512 |
+
|
513 |
+
#### multi_stsb_nl
|
514 |
+
|
515 |
+
* Dataset: [multi_stsb_nl](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
|
516 |
+
* Size: 5,749 training samples
|
517 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
518 |
+
* Approximate statistics based on the first 1000 samples:
|
519 |
+
| | sentence1 | sentence2 | score |
|
520 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
521 |
+
| type | string | string | float |
|
522 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 11.67 tokens</li><li>max: 33 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.55 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> |
|
523 |
+
* Samples:
|
524 |
+
| sentence1 | sentence2 | score |
|
525 |
+
|:--------------------------------------------------------|:--------------------------------------------------------------------|:--------------------------------|
|
526 |
+
| <code>Er gaat een vliegtuig opstijgen.</code> | <code>Er gaat een vliegtuig opstijgen.</code> | <code>1.0</code> |
|
527 |
+
| <code>Een man speelt een grote fluit.</code> | <code>Een man speelt fluit.</code> | <code>0.7599999904632568</code> |
|
528 |
+
| <code>Een man smeert geraspte kaas op een pizza.</code> | <code>Een man strooit geraspte kaas op een ongekookte pizza.</code> | <code>0.7599999904632568</code> |
|
529 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
530 |
+
```json
|
531 |
+
{
|
532 |
+
"scale": 20.0,
|
533 |
+
"similarity_fct": "pairwise_cos_sim"
|
534 |
+
}
|
535 |
+
```
|
536 |
+
</details>
|
537 |
+
<details><summary>multi_stsb_pl</summary>
|
538 |
+
|
539 |
+
#### multi_stsb_pl
|
540 |
+
|
541 |
+
* Dataset: [multi_stsb_pl](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
|
542 |
+
* Size: 5,749 training samples
|
543 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
544 |
+
* Approximate statistics based on the first 1000 samples:
|
545 |
+
| | sentence1 | sentence2 | score |
|
546 |
+
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
547 |
+
| type | string | string | float |
|
548 |
+
| details | <ul><li>min: 5 tokens</li><li>mean: 12.2 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 12.11 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> |
|
549 |
+
* Samples:
|
550 |
+
| sentence1 | sentence2 | score |
|
551 |
+
|:-----------------------------------------------------------|:------------------------------------------------------------------------|:--------------------------------|
|
552 |
+
| <code>Samolot wystartował.</code> | <code>Samolot wystartował.</code> | <code>1.0</code> |
|
553 |
+
| <code>Człowiek gra na dużym flecie.</code> | <code>Człowiek gra na flecie.</code> | <code>0.7599999904632568</code> |
|
554 |
+
| <code>Mężczyzna rozsiewa na pizzy rozdrobniony ser.</code> | <code>Mężczyzna rozsiewa rozdrobniony ser na niegotowanej pizzy.</code> | <code>0.7599999904632568</code> |
|
555 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
556 |
+
```json
|
557 |
+
{
|
558 |
+
"scale": 20.0,
|
559 |
+
"similarity_fct": "pairwise_cos_sim"
|
560 |
+
}
|
561 |
+
```
|
562 |
+
</details>
|
563 |
+
<details><summary>multi_stsb_pt</summary>
|
564 |
+
|
565 |
+
#### multi_stsb_pt
|
566 |
+
|
567 |
+
* Dataset: [multi_stsb_pt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
|
568 |
+
* Size: 5,749 training samples
|
569 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
570 |
+
* Approximate statistics based on the first 1000 samples:
|
571 |
+
| | sentence1 | sentence2 | score |
|
572 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
573 |
+
| type | string | string | float |
|
574 |
+
| details | <ul><li>min: 7 tokens</li><li>mean: 12.33 tokens</li><li>max: 34 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 12.29 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> |
|
575 |
+
* Samples:
|
576 |
+
| sentence1 | sentence2 | score |
|
577 |
+
|:------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------|
|
578 |
+
| <code>Um avião está a descolar.</code> | <code>Um avião aéreo está a descolar.</code> | <code>1.0</code> |
|
579 |
+
| <code>Um homem está a tocar uma grande flauta.</code> | <code>Um homem está a tocar uma flauta.</code> | <code>0.7599999904632568</code> |
|
580 |
+
| <code>Um homem está a espalhar queijo desfiado numa pizza.</code> | <code>Um homem está a espalhar queijo desfiado sobre uma pizza não cozida.</code> | <code>0.7599999904632568</code> |
|
581 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
582 |
+
```json
|
583 |
+
{
|
584 |
+
"scale": 20.0,
|
585 |
+
"similarity_fct": "pairwise_cos_sim"
|
586 |
+
}
|
587 |
+
```
|
588 |
+
</details>
|
589 |
+
<details><summary>multi_stsb_ru</summary>
|
590 |
+
|
591 |
+
#### multi_stsb_ru
|
592 |
+
|
593 |
+
* Dataset: [multi_stsb_ru](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
|
594 |
+
* Size: 5,749 training samples
|
595 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
596 |
+
* Approximate statistics based on the first 1000 samples:
|
597 |
+
| | sentence1 | sentence2 | score |
|
598 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
599 |
+
| type | string | string | float |
|
600 |
+
| details | <ul><li>min: 5 tokens</li><li>mean: 11.19 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 11.17 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> |
|
601 |
+
* Samples:
|
602 |
+
| sentence1 | sentence2 | score |
|
603 |
+
|:------------------------------------------------|:---------------------------------------------------------------------|:--------------------------------|
|
604 |
+
| <code>Самолет взлетает.</code> | <code>Взлетает самолет.</code> | <code>1.0</code> |
|
605 |
+
| <code>Человек играет на большой флейте.</code> | <code>Человек играет на флейте.</code> | <code>0.7599999904632568</code> |
|
606 |
+
| <code>Мужчина разбрасывает сыр на пиццу.</code> | <code>Мужчина разбрасывает измельченный сыр на вареную пиццу.</code> | <code>0.7599999904632568</code> |
|
607 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
608 |
+
```json
|
609 |
+
{
|
610 |
+
"scale": 20.0,
|
611 |
+
"similarity_fct": "pairwise_cos_sim"
|
612 |
+
}
|
613 |
+
```
|
614 |
+
</details>
|
615 |
+
<details><summary>multi_stsb_zh</summary>
|
616 |
+
|
617 |
+
#### multi_stsb_zh
|
618 |
+
|
619 |
+
* Dataset: [multi_stsb_zh](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
|
620 |
+
* Size: 5,749 training samples
|
621 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
622 |
+
* Approximate statistics based on the first 1000 samples:
|
623 |
+
| | sentence1 | sentence2 | score |
|
624 |
+
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
625 |
+
| type | string | string | float |
|
626 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 10.7 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 10.79 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> |
|
627 |
+
* Samples:
|
628 |
+
| sentence1 | sentence2 | score |
|
629 |
+
|:------------------------------|:----------------------------------|:--------------------------------|
|
630 |
+
| <code>一架飞机正在起飞。</code> | <code>一架飞机正在起飞。</code> | <code>1.0</code> |
|
631 |
+
| <code>一个男人正在吹一支大笛子。</code> | <code>一个人在吹笛子。</code> | <code>0.7599999904632568</code> |
|
632 |
+
| <code>一名男子正在比萨饼上涂抹奶酪丝。</code> | <code>一名男子正在将奶酪丝涂抹在未熟的披萨上。</code> | <code>0.7599999904632568</code> |
|
633 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
634 |
+
```json
|
635 |
+
{
|
636 |
+
"scale": 20.0,
|
637 |
+
"similarity_fct": "pairwise_cos_sim"
|
638 |
+
}
|
639 |
+
```
|
640 |
+
</details>
|
641 |
+
|
642 |
+
### Evaluation Datasets
|
643 |
+
<details><summary>multi_stsb_de</summary>
|
644 |
+
|
645 |
+
#### multi_stsb_de
|
646 |
+
|
647 |
+
* Dataset: [multi_stsb_de](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
|
648 |
+
* Size: 1,500 evaluation samples
|
649 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
650 |
+
* Approximate statistics based on the first 1000 samples:
|
651 |
+
| | sentence1 | sentence2 | score |
|
652 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
653 |
+
| type | string | string | float |
|
654 |
+
| details | <ul><li>min: 5 tokens</li><li>mean: 18.25 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 18.25 tokens</li><li>max: 54 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.42</li><li>max: 1.0</li></ul> |
|
655 |
+
* Samples:
|
656 |
+
| sentence1 | sentence2 | score |
|
657 |
+
|:-------------------------------------------------------------|:-----------------------------------------------------------|:-------------------------------|
|
658 |
+
| <code>Ein Mann mit einem Schutzhelm tanzt.</code> | <code>Ein Mann mit einem Schutzhelm tanzt.</code> | <code>1.0</code> |
|
659 |
+
| <code>Ein kleines Kind reitet auf einem Pferd.</code> | <code>Ein Kind reitet auf einem Pferd.</code> | <code>0.949999988079071</code> |
|
660 |
+
| <code>Ein Mann verfüttert eine Maus an eine Schlange.</code> | <code>Der Mann füttert die Schlange mit einer Maus.</code> | <code>1.0</code> |
|
661 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
662 |
+
```json
|
663 |
+
{
|
664 |
+
"scale": 20.0,
|
665 |
+
"similarity_fct": "pairwise_cos_sim"
|
666 |
+
}
|
667 |
+
```
|
668 |
+
</details>
|
669 |
+
<details><summary>multi_stsb_es</summary>
|
670 |
+
|
671 |
+
#### multi_stsb_es
|
672 |
+
|
673 |
+
* Dataset: [multi_stsb_es](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
|
674 |
+
* Size: 1,500 evaluation samples
|
675 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
676 |
+
* Approximate statistics based on the first 1000 samples:
|
677 |
+
| | sentence1 | sentence2 | score |
|
678 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
679 |
+
| type | string | string | float |
|
680 |
+
| details | <ul><li>min: 7 tokens</li><li>mean: 17.98 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 17.86 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.42</li><li>max: 1.0</li></ul> |
|
681 |
+
* Samples:
|
682 |
+
| sentence1 | sentence2 | score |
|
683 |
+
|:----------------------------------------------------------------------|:---------------------------------------------------------------------|:-------------------------------|
|
684 |
+
| <code>Un hombre con un casco está bailando.</code> | <code>Un hombre con un casco está bailando.</code> | <code>1.0</code> |
|
685 |
+
| <code>Un niño pequeño está montando a caballo.</code> | <code>Un niño está montando a caballo.</code> | <code>0.949999988079071</code> |
|
686 |
+
| <code>Un hombre está alimentando a una serpiente con un ratón.</code> | <code>El hombre está alimentando a la serpiente con un ratón.</code> | <code>1.0</code> |
|
687 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
688 |
+
```json
|
689 |
+
{
|
690 |
+
"scale": 20.0,
|
691 |
+
"similarity_fct": "pairwise_cos_sim"
|
692 |
+
}
|
693 |
+
```
|
694 |
+
</details>
|
695 |
+
<details><summary>multi_stsb_fr</summary>
|
696 |
+
|
697 |
+
#### multi_stsb_fr
|
698 |
+
|
699 |
+
* Dataset: [multi_stsb_fr](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
|
700 |
+
* Size: 1,500 evaluation samples
|
701 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
702 |
+
* Approximate statistics based on the first 1000 samples:
|
703 |
+
| | sentence1 | sentence2 | score |
|
704 |
+
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
705 |
+
| type | string | string | float |
|
706 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 19.7 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 19.65 tokens</li><li>max: 51 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.42</li><li>max: 1.0</li></ul> |
|
707 |
+
* Samples:
|
708 |
+
| sentence1 | sentence2 | score |
|
709 |
+
|:-------------------------------------------------------------------------|:----------------------------------------------------------------------------|:-------------------------------|
|
710 |
+
| <code>Un homme avec un casque de sécurité est en train de danser.</code> | <code>Un homme portant un casque de sécurité est en train de danser.</code> | <code>1.0</code> |
|
711 |
+
| <code>Un jeune enfant monte à cheval.</code> | <code>Un enfant monte à cheval.</code> | <code>0.949999988079071</code> |
|
712 |
+
| <code>Un homme donne une souris à un serpent.</code> | <code>L'homme donne une souris au serpent.</code> | <code>1.0</code> |
|
713 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
714 |
+
```json
|
715 |
+
{
|
716 |
+
"scale": 20.0,
|
717 |
+
"similarity_fct": "pairwise_cos_sim"
|
718 |
+
}
|
719 |
+
```
|
720 |
+
</details>
|
721 |
+
<details><summary>multi_stsb_it</summary>
|
722 |
+
|
723 |
+
#### multi_stsb_it
|
724 |
+
|
725 |
+
* Dataset: [multi_stsb_it](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
|
726 |
+
* Size: 1,500 evaluation samples
|
727 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
728 |
+
* Approximate statistics based on the first 1000 samples:
|
729 |
+
| | sentence1 | sentence2 | score |
|
730 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
731 |
+
| type | string | string | float |
|
732 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 18.42 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 18.43 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.42</li><li>max: 1.0</li></ul> |
|
733 |
+
* Samples:
|
734 |
+
| sentence1 | sentence2 | score |
|
735 |
+
|:------------------------------------------------------------------|:---------------------------------------------------------------|:-------------------------------|
|
736 |
+
| <code>Un uomo con l'elmetto sta ballando.</code> | <code>Un uomo che indossa un elmetto sta ballando.</code> | <code>1.0</code> |
|
737 |
+
| <code>Un bambino piccolo sta cavalcando un cavallo.</code> | <code>Un bambino sta cavalcando un cavallo.</code> | <code>0.949999988079071</code> |
|
738 |
+
| <code>Un uomo sta dando da mangiare un topo a un serpente.</code> | <code>L'uomo sta dando da mangiare un topo al serpente.</code> | <code>1.0</code> |
|
739 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
740 |
+
```json
|
741 |
+
{
|
742 |
+
"scale": 20.0,
|
743 |
+
"similarity_fct": "pairwise_cos_sim"
|
744 |
+
}
|
745 |
+
```
|
746 |
+
</details>
|
747 |
+
<details><summary>multi_stsb_nl</summary>
|
748 |
+
|
749 |
+
#### multi_stsb_nl
|
750 |
+
|
751 |
+
* Dataset: [multi_stsb_nl](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
|
752 |
+
* Size: 1,500 evaluation samples
|
753 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
754 |
+
* Approximate statistics based on the first 1000 samples:
|
755 |
+
| | sentence1 | sentence2 | score |
|
756 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
757 |
+
| type | string | string | float |
|
758 |
+
| details | <ul><li>min: 5 tokens</li><li>mean: 17.88 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 17.71 tokens</li><li>max: 51 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.42</li><li>max: 1.0</li></ul> |
|
759 |
+
* Samples:
|
760 |
+
| sentence1 | sentence2 | score |
|
761 |
+
|:-----------------------------------------------------|:-----------------------------------------------------|:-------------------------------|
|
762 |
+
| <code>Een man met een helm is aan het dansen.</code> | <code>Een man met een helm is aan het dansen.</code> | <code>1.0</code> |
|
763 |
+
| <code>Een jong kind rijdt op een paard.</code> | <code>Een kind rijdt op een paard.</code> | <code>0.949999988079071</code> |
|
764 |
+
| <code>Een man voedt een muis aan een slang.</code> | <code>De man voert een muis aan de slang.</code> | <code>1.0</code> |
|
765 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
766 |
+
```json
|
767 |
+
{
|
768 |
+
"scale": 20.0,
|
769 |
+
"similarity_fct": "pairwise_cos_sim"
|
770 |
+
}
|
771 |
+
```
|
772 |
+
</details>
|
773 |
+
<details><summary>multi_stsb_pl</summary>
|
774 |
+
|
775 |
+
#### multi_stsb_pl
|
776 |
+
|
777 |
+
* Dataset: [multi_stsb_pl](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
|
778 |
+
* Size: 1,500 evaluation samples
|
779 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
780 |
+
* Approximate statistics based on the first 1000 samples:
|
781 |
+
| | sentence1 | sentence2 | score |
|
782 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
783 |
+
| type | string | string | float |
|
784 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 18.54 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 18.43 tokens</li><li>max: 54 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.42</li><li>max: 1.0</li></ul> |
|
785 |
+
* Samples:
|
786 |
+
| sentence1 | sentence2 | score |
|
787 |
+
|:---------------------------------------------------|:---------------------------------------------------|:-------------------------------|
|
788 |
+
| <code>Tańczy mężczyzna w twardym kapeluszu.</code> | <code>Tańczy mężczyzna w twardym kapeluszu.</code> | <code>1.0</code> |
|
789 |
+
| <code>Małe dziecko jedzie na koniu.</code> | <code>Dziecko jedzie na koniu.</code> | <code>0.949999988079071</code> |
|
790 |
+
| <code>Człowiek karmi węża myszką.</code> | <code>Ten człowiek karmi węża myszką.</code> | <code>1.0</code> |
|
791 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
792 |
+
```json
|
793 |
+
{
|
794 |
+
"scale": 20.0,
|
795 |
+
"similarity_fct": "pairwise_cos_sim"
|
796 |
+
}
|
797 |
+
```
|
798 |
+
</details>
|
799 |
+
<details><summary>multi_stsb_pt</summary>
|
800 |
+
|
801 |
+
#### multi_stsb_pt
|
802 |
+
|
803 |
+
* Dataset: [multi_stsb_pt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
|
804 |
+
* Size: 1,500 evaluation samples
|
805 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
806 |
+
* Approximate statistics based on the first 1000 samples:
|
807 |
+
| | sentence1 | sentence2 | score |
|
808 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
809 |
+
| type | string | string | float |
|
810 |
+
| details | <ul><li>min: 7 tokens</li><li>mean: 18.22 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 18.11 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.42</li><li>max: 1.0</li></ul> |
|
811 |
+
* Samples:
|
812 |
+
| sentence1 | sentence2 | score |
|
813 |
+
|:------------------------------------------------------------|:-----------------------------------------------------------|:-------------------------------|
|
814 |
+
| <code>Um homem de chapéu duro está a dançar.</code> | <code>Um homem com um capacete está a dançar.</code> | <code>1.0</code> |
|
815 |
+
| <code>Uma criança pequena está a montar a cavalo.</code> | <code>Uma criança está a montar a cavalo.</code> | <code>0.949999988079071</code> |
|
816 |
+
| <code>Um homem está a alimentar um rato a uma cobra.</code> | <code>O homem está a alimentar a cobra com um rato.</code> | <code>1.0</code> |
|
817 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
818 |
+
```json
|
819 |
+
{
|
820 |
+
"scale": 20.0,
|
821 |
+
"similarity_fct": "pairwise_cos_sim"
|
822 |
+
}
|
823 |
+
```
|
824 |
+
</details>
|
825 |
+
<details><summary>multi_stsb_ru</summary>
|
826 |
+
|
827 |
+
#### multi_stsb_ru
|
828 |
+
|
829 |
+
* Dataset: [multi_stsb_ru](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
|
830 |
+
* Size: 1,500 evaluation samples
|
831 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
832 |
+
* Approximate statistics based on the first 1000 samples:
|
833 |
+
| | sentence1 | sentence2 | score |
|
834 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
835 |
+
| type | string | string | float |
|
836 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 17.92 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 17.75 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.42</li><li>max: 1.0</li></ul> |
|
837 |
+
* Samples:
|
838 |
+
| sentence1 | sentence2 | score |
|
839 |
+
|:------------------------------------------------------|:----------------------------------------------|:-------------------------------|
|
840 |
+
| <code>Человек в твердой шляпе танцует.</code> | <code>Мужчина в твердой шляпе танцует.</code> | <code>1.0</code> |
|
841 |
+
| <code>Маленький ребенок едет верхом на лошади.</code> | <code>Ребенок едет на лошади.</code> | <code>0.949999988079071</code> |
|
842 |
+
| <code>Мужчина кормит мышь змее.</code> | <code>Человек кормит змею мышью.</code> | <code>1.0</code> |
|
843 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
844 |
+
```json
|
845 |
+
{
|
846 |
+
"scale": 20.0,
|
847 |
+
"similarity_fct": "pairwise_cos_sim"
|
848 |
+
}
|
849 |
+
```
|
850 |
+
</details>
|
851 |
+
<details><summary>multi_stsb_zh</summary>
|
852 |
+
|
853 |
+
#### multi_stsb_zh
|
854 |
+
|
855 |
+
* Dataset: [multi_stsb_zh](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
|
856 |
+
* Size: 1,500 evaluation samples
|
857 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
858 |
+
* Approximate statistics based on the first 1000 samples:
|
859 |
+
| | sentence1 | sentence2 | score |
|
860 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
861 |
+
| type | string | string | float |
|
862 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 15.37 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 15.24 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.42</li><li>max: 1.0</li></ul> |
|
863 |
+
* Samples:
|
864 |
+
| sentence1 | sentence2 | score |
|
865 |
+
|:---------------------------|:--------------------------|:-------------------------------|
|
866 |
+
| <code>一个戴着硬帽子的人在跳舞。</code> | <code>一个戴着硬帽的人在跳舞。</code> | <code>1.0</code> |
|
867 |
+
| <code>一个小孩子在骑马。</code> | <code>一个孩子在骑马。</code> | <code>0.949999988079071</code> |
|
868 |
+
| <code>一个人正在用老鼠喂蛇。</code> | <code>那人正在给蛇喂老鼠。</code> | <code>1.0</code> |
|
869 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
870 |
+
```json
|
871 |
+
{
|
872 |
+
"scale": 20.0,
|
873 |
+
"similarity_fct": "pairwise_cos_sim"
|
874 |
+
}
|
875 |
+
```
|
876 |
+
</details>
|
877 |
+
|
878 |
+
### Training Hyperparameters
|
879 |
+
#### Non-Default Hyperparameters
|
880 |
+
|
881 |
+
- `eval_strategy`: steps
|
882 |
+
- `per_device_train_batch_size`: 16
|
883 |
+
- `per_device_eval_batch_size`: 16
|
884 |
+
- `num_train_epochs`: 4
|
885 |
+
- `warmup_ratio`: 0.1
|
886 |
+
|
887 |
+
#### All Hyperparameters
|
888 |
+
<details><summary>Click to expand</summary>
|
889 |
+
|
890 |
+
- `overwrite_output_dir`: False
|
891 |
+
- `do_predict`: False
|
892 |
+
- `eval_strategy`: steps
|
893 |
+
- `prediction_loss_only`: True
|
894 |
+
- `per_device_train_batch_size`: 16
|
895 |
+
- `per_device_eval_batch_size`: 16
|
896 |
+
- `per_gpu_train_batch_size`: None
|
897 |
+
- `per_gpu_eval_batch_size`: None
|
898 |
+
- `gradient_accumulation_steps`: 1
|
899 |
+
- `eval_accumulation_steps`: None
|
900 |
+
- `torch_empty_cache_steps`: None
|
901 |
+
- `learning_rate`: 5e-05
|
902 |
+
- `weight_decay`: 0.0
|
903 |
+
- `adam_beta1`: 0.9
|
904 |
+
- `adam_beta2`: 0.999
|
905 |
+
- `adam_epsilon`: 1e-08
|
906 |
+
- `max_grad_norm`: 1.0
|
907 |
+
- `num_train_epochs`: 4
|
908 |
+
- `max_steps`: -1
|
909 |
+
- `lr_scheduler_type`: linear
|
910 |
+
- `lr_scheduler_kwargs`: {}
|
911 |
+
- `warmup_ratio`: 0.1
|
912 |
+
- `warmup_steps`: 0
|
913 |
+
- `log_level`: passive
|
914 |
+
- `log_level_replica`: warning
|
915 |
+
- `log_on_each_node`: True
|
916 |
+
- `logging_nan_inf_filter`: True
|
917 |
+
- `save_safetensors`: True
|
918 |
+
- `save_on_each_node`: False
|
919 |
+
- `save_only_model`: False
|
920 |
+
- `restore_callback_states_from_checkpoint`: False
|
921 |
+
- `no_cuda`: False
|
922 |
+
- `use_cpu`: False
|
923 |
+
- `use_mps_device`: False
|
924 |
+
- `seed`: 42
|
925 |
+
- `data_seed`: None
|
926 |
+
- `jit_mode_eval`: False
|
927 |
+
- `use_ipex`: False
|
928 |
+
- `bf16`: False
|
929 |
+
- `fp16`: False
|
930 |
+
- `fp16_opt_level`: O1
|
931 |
+
- `half_precision_backend`: auto
|
932 |
+
- `bf16_full_eval`: False
|
933 |
+
- `fp16_full_eval`: False
|
934 |
+
- `tf32`: None
|
935 |
+
- `local_rank`: 0
|
936 |
+
- `ddp_backend`: None
|
937 |
+
- `tpu_num_cores`: None
|
938 |
+
- `tpu_metrics_debug`: False
|
939 |
+
- `debug`: []
|
940 |
+
- `dataloader_drop_last`: False
|
941 |
+
- `dataloader_num_workers`: 0
|
942 |
+
- `dataloader_prefetch_factor`: None
|
943 |
+
- `past_index`: -1
|
944 |
+
- `disable_tqdm`: False
|
945 |
+
- `remove_unused_columns`: True
|
946 |
+
- `label_names`: None
|
947 |
+
- `load_best_model_at_end`: False
|
948 |
+
- `ignore_data_skip`: False
|
949 |
+
- `fsdp`: []
|
950 |
+
- `fsdp_min_num_params`: 0
|
951 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
952 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
953 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
954 |
+
- `deepspeed`: None
|
955 |
+
- `label_smoothing_factor`: 0.0
|
956 |
+
- `optim`: adamw_torch
|
957 |
+
- `optim_args`: None
|
958 |
+
- `adafactor`: False
|
959 |
+
- `group_by_length`: False
|
960 |
+
- `length_column_name`: length
|
961 |
+
- `ddp_find_unused_parameters`: None
|
962 |
+
- `ddp_bucket_cap_mb`: None
|
963 |
+
- `ddp_broadcast_buffers`: False
|
964 |
+
- `dataloader_pin_memory`: True
|
965 |
+
- `dataloader_persistent_workers`: False
|
966 |
+
- `skip_memory_metrics`: True
|
967 |
+
- `use_legacy_prediction_loop`: False
|
968 |
+
- `push_to_hub`: False
|
969 |
+
- `resume_from_checkpoint`: None
|
970 |
+
- `hub_model_id`: None
|
971 |
+
- `hub_strategy`: every_save
|
972 |
+
- `hub_private_repo`: None
|
973 |
+
- `hub_always_push`: False
|
974 |
+
- `gradient_checkpointing`: False
|
975 |
+
- `gradient_checkpointing_kwargs`: None
|
976 |
+
- `include_inputs_for_metrics`: False
|
977 |
+
- `include_for_metrics`: []
|
978 |
+
- `eval_do_concat_batches`: True
|
979 |
+
- `fp16_backend`: auto
|
980 |
+
- `push_to_hub_model_id`: None
|
981 |
+
- `push_to_hub_organization`: None
|
982 |
+
- `mp_parameters`:
|
983 |
+
- `auto_find_batch_size`: False
|
984 |
+
- `full_determinism`: False
|
985 |
+
- `torchdynamo`: None
|
986 |
+
- `ray_scope`: last
|
987 |
+
- `ddp_timeout`: 1800
|
988 |
+
- `torch_compile`: False
|
989 |
+
- `torch_compile_backend`: None
|
990 |
+
- `torch_compile_mode`: None
|
991 |
+
- `dispatch_batches`: None
|
992 |
+
- `split_batches`: None
|
993 |
+
- `include_tokens_per_second`: False
|
994 |
+
- `include_num_input_tokens_seen`: False
|
995 |
+
- `neftune_noise_alpha`: None
|
996 |
+
- `optim_target_modules`: None
|
997 |
+
- `batch_eval_metrics`: False
|
998 |
+
- `eval_on_start`: False
|
999 |
+
- `use_liger_kernel`: False
|
1000 |
+
- `eval_use_gather_object`: False
|
1001 |
+
- `average_tokens_across_devices`: False
|
1002 |
+
- `prompts`: None
|
1003 |
+
- `batch_sampler`: batch_sampler
|
1004 |
+
- `multi_dataset_batch_sampler`: proportional
|
1005 |
+
|
1006 |
+
</details>
|
1007 |
+
|
1008 |
+
### Training Logs
|
1009 |
+
| Epoch | Step | Training Loss | multi stsb de loss | multi stsb es loss | multi stsb fr loss | multi stsb it loss | multi stsb nl loss | multi stsb pl loss | multi stsb pt loss | multi stsb ru loss | multi stsb zh loss | sts-eval_spearman_cosine | sts-test_spearman_cosine |
|
1010 |
+
|:-----:|:-----:|:-------------:|:------------------:|:------------------:|:------------------:|:------------------:|:------------------:|:------------------:|:------------------:|:------------------:|:------------------:|:------------------------:|:------------------------:|
|
1011 |
+
| 4.0 | 12960 | 3.7859 | 6.5030 | 6.5739 | 6.7230 | 6.8049 | 6.6585 | 6.8389 | 6.6333 | 6.7102 | 6.3148 | 0.8611 | - |
|
1012 |
+
| -1 | -1 | - | - | - | - | - | - | - | - | - | - | - | 0.7878 |
|
1013 |
+
|
1014 |
+
|
1015 |
+
### Framework Versions
|
1016 |
+
- Python: 3.10.13
|
1017 |
+
- Sentence Transformers: 3.4.1
|
1018 |
+
- Transformers: 4.48.2
|
1019 |
+
- PyTorch: 2.1.2+cu121
|
1020 |
+
- Accelerate: 1.3.0
|
1021 |
+
- Datasets: 2.16.1
|
1022 |
+
- Tokenizers: 0.21.0
|
1023 |
+
|
1024 |
+
## Citation
|
1025 |
+
|
1026 |
+
### BibTeX
|
1027 |
+
|
1028 |
+
#### Sentence Transformers
|
1029 |
+
```bibtex
|
1030 |
+
@inproceedings{reimers-2019-sentence-bert,
|
1031 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
1032 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
1033 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
1034 |
+
month = "11",
|
1035 |
+
year = "2019",
|
1036 |
+
publisher = "Association for Computational Linguistics",
|
1037 |
+
url = "https://arxiv.org/abs/1908.10084",
|
1038 |
+
}
|
1039 |
+
```
|
1040 |
+
|
1041 |
+
#### CoSENTLoss
|
1042 |
+
```bibtex
|
1043 |
+
@online{kexuefm-8847,
|
1044 |
+
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
|
1045 |
+
author={Su Jianlin},
|
1046 |
+
year={2022},
|
1047 |
+
month={Jan},
|
1048 |
+
url={https://kexue.fm/archives/8847},
|
1049 |
+
}
|
1050 |
+
```
|
1051 |
+
|
1052 |
+
<!--
|
1053 |
+
## Glossary
|
1054 |
+
|
1055 |
+
*Clearly define terms in order to be accessible across audiences.*
|
1056 |
+
-->
|
1057 |
+
|
1058 |
+
<!--
|
1059 |
+
## Model Card Authors
|
1060 |
+
|
1061 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
1062 |
+
-->
|
1063 |
+
|
1064 |
+
<!--
|
1065 |
+
## Model Card Contact
|
1066 |
+
|
1067 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
1068 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "sentence-transformers/paraphrase-multilingual-mpnet-base-v2",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"gradient_checkpointing": false,
|
11 |
+
"hidden_act": "gelu",
|
12 |
+
"hidden_dropout_prob": 0.1,
|
13 |
+
"hidden_size": 768,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 3072,
|
16 |
+
"layer_norm_eps": 1e-05,
|
17 |
+
"max_position_embeddings": 514,
|
18 |
+
"model_type": "xlm-roberta",
|
19 |
+
"num_attention_heads": 12,
|
20 |
+
"num_hidden_layers": 12,
|
21 |
+
"output_past": true,
|
22 |
+
"pad_token_id": 1,
|
23 |
+
"position_embedding_type": "absolute",
|
24 |
+
"torch_dtype": "float32",
|
25 |
+
"transformers_version": "4.48.2",
|
26 |
+
"type_vocab_size": 1,
|
27 |
+
"use_cache": true,
|
28 |
+
"vocab_size": 250002
|
29 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.4.1",
|
4 |
+
"transformers": "4.48.2",
|
5 |
+
"pytorch": "2.1.2+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7ca61d97fdd9c136afb7c2357e35a7fc199ad118b4846587726e5e51bdabc492
|
3 |
+
size 1112197096
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_MultiHeadGeneralizedPooling",
|
12 |
+
"type": "sentence_generalized_pooling.multihead_generalized_pooling.MultiHeadGeneralizedPooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 128,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
3 |
+
size 5069051
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
|
3 |
+
size 17082987
|
tokenizer_config.json
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": false,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"extra_special_tokens": {},
|
49 |
+
"mask_token": "<mask>",
|
50 |
+
"max_length": 128,
|
51 |
+
"model_max_length": 128,
|
52 |
+
"pad_to_multiple_of": null,
|
53 |
+
"pad_token": "<pad>",
|
54 |
+
"pad_token_type_id": 0,
|
55 |
+
"padding_side": "right",
|
56 |
+
"sep_token": "</s>",
|
57 |
+
"stride": 0,
|
58 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
59 |
+
"truncation_side": "right",
|
60 |
+
"truncation_strategy": "longest_first",
|
61 |
+
"unk_token": "<unk>"
|
62 |
+
}
|