--- base_model: google/paligemma-3b-pt-224 library_name: peft license: gemma tags: - generated_from_trainer model-index: - name: palige_original_lora_8_epo_12 results: [] --- # palige_original_lora_8_epo_12 This model is a fine-tuned version of [google/paligemma-3b-pt-224](https://huggingface.co/google/paligemma-3b-pt-224) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8624 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 40 - optimizer: Use OptimizerNames.ADAMW_HF with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:----:|:---------------:| | 4.1762 | 0.3125 | 100 | 2.4304 | | 2.2687 | 0.625 | 200 | 1.5980 | | 1.7935 | 0.9375 | 300 | 1.3086 | | 1.6099 | 1.25 | 400 | 1.1783 | | 1.5425 | 1.5625 | 500 | 1.0963 | | 1.4383 | 1.875 | 600 | 1.0387 | | 1.3341 | 2.1875 | 700 | 0.9937 | | 1.319 | 2.5 | 800 | 0.9610 | | 1.2648 | 2.8125 | 900 | 0.9275 | | 1.0991 | 3.125 | 1000 | 0.9046 | | 1.1596 | 3.4375 | 1100 | 0.8902 | | 1.1586 | 3.75 | 1200 | 0.8788 | | 1.0607 | 4.0625 | 1300 | 0.8631 | | 1.0172 | 4.375 | 1400 | 0.8527 | | 1.014 | 4.6875 | 1500 | 0.8435 | | 1.004 | 5.0 | 1600 | 0.8319 | | 0.8944 | 5.3125 | 1700 | 0.8404 | | 0.9064 | 5.625 | 1800 | 0.8148 | | 0.9136 | 5.9375 | 1900 | 0.8178 | | 0.8312 | 6.25 | 2000 | 0.8241 | | 0.8253 | 6.5625 | 2100 | 0.8118 | | 0.8623 | 6.875 | 2200 | 0.8004 | | 0.7545 | 7.1875 | 2300 | 0.8054 | | 0.7508 | 7.5 | 2400 | 0.8135 | | 0.7204 | 7.8125 | 2500 | 0.7960 | | 0.6948 | 8.125 | 2600 | 0.8121 | | 0.6607 | 8.4375 | 2700 | 0.8265 | | 0.6804 | 8.75 | 2800 | 0.8077 | | 0.6556 | 9.0625 | 2900 | 0.8440 | | 0.5798 | 9.375 | 3000 | 0.8263 | | 0.5787 | 9.6875 | 3100 | 0.8274 | | 0.5909 | 10.0 | 3200 | 0.8241 | | 0.5254 | 10.3125 | 3300 | 0.8548 | | 0.5184 | 10.625 | 3400 | 0.8649 | | 0.5267 | 10.9375 | 3500 | 0.8467 | | 0.4687 | 11.25 | 3600 | 0.8830 | | 0.4678 | 11.5625 | 3700 | 0.8639 | | 0.4528 | 11.875 | 3800 | 0.8624 | ### Framework versions - PEFT 0.13.0 - Transformers 4.46.0.dev0 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0