Rustamshry commited on
Commit
6b91fa1
·
verified ·
1 Parent(s): 554cbec

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +79 -145
README.md CHANGED
@@ -1,202 +1,136 @@
1
  ---
2
  base_model: unsloth/Llama-3.2-1B-Instruct
3
  library_name: peft
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
 
11
 
12
  ## Model Details
13
 
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
 
 
 
 
 
18
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
 
 
 
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
 
43
 
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
51
 
52
- ### Out-of-Scope Use
 
 
 
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
 
 
 
 
57
 
58
- ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
63
 
64
- ### Recommendations
 
 
 
 
 
 
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
 
 
 
 
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
 
 
 
69
 
70
- ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
 
 
 
73
 
74
- [More Information Needed]
 
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
 
84
  ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
 
 
 
92
 
93
  #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
 
 
 
 
 
 
 
 
96
 
97
  #### Speeds, Sizes, Times [optional]
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
 
127
  ### Results
128
 
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
200
  ### Framework versions
201
 
202
  - PEFT 0.14.0
 
1
  ---
2
  base_model: unsloth/Llama-3.2-1B-Instruct
3
  library_name: peft
4
+ license: mit
5
+ datasets:
6
+ - gretelai/synthetic_text_to_sql
7
+ language:
8
+ - en
9
+ pipeline_tag: text2text-generation
10
+ tags:
11
+ - SQL
12
  ---
13
 
14
+ # Model Card for Llama3.2-SQL-1B
 
 
 
15
 
16
 
17
  ## Model Details
18
 
19
+ This model is a fine-tuned version of Llama3.2-1B-Instruct, optimized for text-to-SQL generation tasks.
20
+ It was trained on the **gretelai/synthetic_text_to_sql** dataset, which contains synthetic natural language questions and their corresponding SQL queries across a variety of domains.
 
21
 
22
+ The model learns to:
23
+ - Understand natural language instructions.
24
+ - Generate syntactically correct and context-aware SQL queries.
25
+ - Interpret structured schema information when included in the prompt.
26
 
27
+ ### Model Description
28
 
 
 
 
 
 
 
 
 
 
29
 
30
+ - **Developed by:** Rustam Shiriyev
31
+ - **Model type:** Instruction-tuned model on Text2SQL data
32
+ - **Language(s) (NLP):** English
33
+ - **License:** MIT
34
+ - **Finetuned from model:** unsloth/Llama3.2-1B-Instruct
35
 
 
 
 
36
 
37
  ## Uses
38
 
 
39
 
40
  ### Direct Use
41
 
42
+ - Natural Language to SQL translation
43
+ - Educational or research applications
44
+ - Lightweight inference for SQL query generation on small-scale tasks or apps
45
 
46
+ ## Bias, Risks, and Limitations
 
 
47
 
48
+ - May not handle deeply nested or complex joins in SQL.
49
 
50
+ ## How to Get Started with the Model
51
 
52
+ ```python
53
+ from huggingface_hub import login
54
+ from transformers import AutoTokenizer, AutoModelForCausalLM
55
+ from peft import PeftModel
56
 
57
+ login(token="")
58
 
59
+ tokenizer = AutoTokenizer.from_pretrained("unsloth/Llama3.2-1B-Instruct",)
60
+ base_model = AutoModelForCausalLM.from_pretrained(
61
+ "unsloth/Llama3.2-1B-Instruct",
62
+ device_map="auto", token=""
63
+ )
64
 
65
+ model = PeftModel.from_pretrained(base_model,"Rustamshry/Llama3.2-SQL-1B")
66
 
 
67
 
68
+ question = "What are the vehicle safety testing organizations that operate in the UK and France?"
69
 
70
+ context =
71
+ """
72
+ CREATE TABLE SafetyOrgs (name VARCHAR(20), country VARCHAR(10));
73
+ INSERT INTO SafetyOrgs (name, country) VALUES ('Euro NCAP', 'UK');
74
+ INSERT INTO SafetyOrgs (name, country) VALUES ('ADAC', 'Germany');
75
+ INSERT INTO SafetyOrgs (name, country) VALUES ('UTAC', 'France');
76
+ """
77
 
78
+ instruction = (
79
+ "You are a skilled SQL assistant."
80
+ "Using the given database context, generate the correct SQL query to answer the question.\n\n"
81
+ f"Context: {context.strip()}"
82
+ )
83
 
84
+ prompt = (
85
+ f"### Instruction:\n{instruction}\n\n"
86
+ f"### Question:\n{question}\n\n"
87
+ f"### Response:\n"
88
+ )
89
 
90
+ input_ids = tokenizer(prompt, return_tensors="pt").to(model.device)
91
 
92
+ outputs = model.generate(
93
+ **input_ids,
94
+ max_new_tokens=2048
95
+ )
96
 
97
+ print(tokenizer.decode(outputs[0]),skip_special_tokens=True)
98
+ ```
99
 
100
  ## Training Details
101
 
102
  ### Training Data
103
 
104
+ -**Dataset**: gretelai/synthetic_text_to_sql which consists of 100,000 synthetic examples of natural language questions paired with corresponding SQL queries and explanations.
 
 
105
 
106
  ### Training Procedure
107
 
108
+ The model was fine-tuned using the Unsloth and LoRA.
 
 
 
 
109
 
110
+ -**LoRA rank**: 8
111
+ -**Aplha**: 16
112
 
113
  #### Training Hyperparameters
114
 
115
+ -**batch size**:8,
116
+ -**gradient accumulation steps**:4,
117
+ -**optimizer**:adamw_torch,
118
+ -**learning rate**:2e-5,
119
+ -**warmup_steps**:100,
120
+ -**fp16**:True,
121
+ -**epochs**:2,
122
+ -**weight_decay**:0.01,
123
+ -**lr_scheduler_type**:linear
124
 
125
  #### Speeds, Sizes, Times [optional]
126
 
127
+ - **Training time**: 8 hour
128
+ - **Speed**: 0.22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
129
 
130
  ### Results
131
 
132
+ - Final Loss: 1.42 >> 0.48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
133
 
 
134
  ### Framework versions
135
 
136
  - PEFT 0.14.0