update
Browse files1. gradio_demo.py 262行:model.generate(**kwargs) → model.generate(**kwargs, pad_token_id=tokenizer.eos_token_id)
2. gradio_demo.py 88行:tokenizer = LlamaTokenizer.from_pretrained(args.tokenizer_path) → tokenizer = LlamaTokenizer.from_pretrained(args.tokenizer_path,legacy=False)
- gradio_demo.py +2 -2
gradio_demo.py
CHANGED
@@ -85,7 +85,7 @@ def setup():
|
|
85 |
args.tokenizer_path = args.lora_model
|
86 |
if args.lora_model is None:
|
87 |
args.tokenizer_path = args.base_model
|
88 |
-
tokenizer = LlamaTokenizer.from_pretrained(args.tokenizer_path)
|
89 |
|
90 |
base_model = LlamaForCausalLM.from_pretrained(
|
91 |
args.base_model,
|
@@ -259,7 +259,7 @@ def predict(
|
|
259 |
kwargs['stopping_criteria'] = [Stream(callback_func=callback)]
|
260 |
clear_torch_cache()
|
261 |
with torch.no_grad():
|
262 |
-
model.generate(**kwargs)
|
263 |
|
264 |
def generate_with_streaming(**kwargs):
|
265 |
return Iteratorize(generate_with_callback, kwargs, callback=None)
|
|
|
85 |
args.tokenizer_path = args.lora_model
|
86 |
if args.lora_model is None:
|
87 |
args.tokenizer_path = args.base_model
|
88 |
+
tokenizer = LlamaTokenizer.from_pretrained(args.tokenizer_path,legacy=False)
|
89 |
|
90 |
base_model = LlamaForCausalLM.from_pretrained(
|
91 |
args.base_model,
|
|
|
259 |
kwargs['stopping_criteria'] = [Stream(callback_func=callback)]
|
260 |
clear_torch_cache()
|
261 |
with torch.no_grad():
|
262 |
+
model.generate(**kwargs, pad_token_id=tokenizer.eos_token_id)
|
263 |
|
264 |
def generate_with_streaming(**kwargs):
|
265 |
return Iteratorize(generate_with_callback, kwargs, callback=None)
|