Ryukijano commited on
Commit
5537b6c
·
1 Parent(s): b1cb276

Upload folder using huggingface_hub

Browse files
my_first_yolonas_run/average_model.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fefae83a344c70a0d5cb41d445af30236cabe239f49a1811b3d5791b4e523606
3
+ size 892982688
my_first_yolonas_run/ckpt_best.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b4ae0de89f2e23aefb5b06abf80654321ec39f142efe0ef2389d911631cca85b
3
+ size 892983836
my_first_yolonas_run/ckpt_latest.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b0e7c7b2cc6d8d517bbde6fe5f6c8a450d203b6e3e8f5514a42002728e52b03d
3
+ size 892991518
my_first_yolonas_run/console_May13_17_05_43.txt ADDED
The diff for this file is too large to render. See raw diff
 
my_first_yolonas_run/console_May13_17_13_58.txt ADDED
The diff for this file is too large to render. See raw diff
 
my_first_yolonas_run/events.out.tfevents.1683997543.cf6772931124.3382.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8c5c9fe3024bd590ac46ac42ee51872345c186dbb1746e05aebfa494d284066e
3
+ size 75856
my_first_yolonas_run/events.out.tfevents.1683998007.cf6772931124.3382.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c5da1902f8e81367b74acee67a558a3ec46ebc248fb0c50e5c37588ed9d07fd
3
+ size 770
my_first_yolonas_run/events.out.tfevents.1683998038.cf6772931124.3382.2 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eccf11c5f4bf264c0112a8430ad99dd9c7612f333ce5f7d2831049868cde61be
3
+ size 291026
my_first_yolonas_run/events.out.tfevents.1684008104.cf6772931124.3382.3 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d72daea4a1b24213485f137076621f5d40d25ec245ffa024f1c508d436c73049
3
+ size 780
my_first_yolonas_run/experiment_logs_May13_17_05_43.txt ADDED
@@ -0,0 +1,646 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ --------- config parameters ----------
2
+ {
3
+ "arch_params": {
4
+ "schema": null
5
+ },
6
+ "checkpoint_params": {
7
+ "load_checkpoint": false,
8
+ "schema": null
9
+ },
10
+ "training_hyperparams": {
11
+ "lr_warmup_epochs": 3,
12
+ "lr_warmup_steps": 0,
13
+ "lr_cooldown_epochs": 0,
14
+ "warmup_initial_lr": 1e-06,
15
+ "cosine_final_lr_ratio": 0.1,
16
+ "optimizer": "Adam",
17
+ "optimizer_params": {
18
+ "weight_decay": 0.0001
19
+ },
20
+ "criterion_params": {},
21
+ "ema": true,
22
+ "batch_accumulate": 1,
23
+ "ema_params": {
24
+ "decay": 0.9,
25
+ "decay_type": "threshold"
26
+ },
27
+ "zero_weight_decay_on_bias_and_bn": true,
28
+ "load_opt_params": true,
29
+ "run_validation_freq": 1,
30
+ "save_model": true,
31
+ "metric_to_watch": "[email protected]",
32
+ "launch_tensorboard": false,
33
+ "tb_files_user_prompt": false,
34
+ "silent_mode": true,
35
+ "mixed_precision": true,
36
+ "tensorboard_port": null,
37
+ "save_ckpt_epoch_list": [],
38
+ "average_best_models": true,
39
+ "dataset_statistics": false,
40
+ "save_tensorboard_to_s3": false,
41
+ "lr_schedule_function": null,
42
+ "train_metrics_list": [],
43
+ "valid_metrics_list": [
44
+ "DetectionMetrics_050(\n (post_prediction_callback): PPYoloEPostPredictionCallback()\n)"
45
+ ],
46
+ "greater_metric_to_watch_is_better": true,
47
+ "precise_bn": false,
48
+ "precise_bn_batch_size": null,
49
+ "seed": 42,
50
+ "lr_mode": "cosine",
51
+ "phase_callbacks": null,
52
+ "log_installed_packages": true,
53
+ "sg_logger": "base_sg_logger",
54
+ "sg_logger_params": {
55
+ "tb_files_user_prompt": false,
56
+ "project_name": "",
57
+ "launch_tensorboard": false,
58
+ "tensorboard_port": null,
59
+ "save_checkpoints_remote": false,
60
+ "save_tensorboard_remote": false,
61
+ "save_logs_remote": false
62
+ },
63
+ "warmup_mode": "linear_epoch_step",
64
+ "step_lr_update_freq": null,
65
+ "lr_updates": [],
66
+ "clip_grad_norm": null,
67
+ "pre_prediction_callback": null,
68
+ "ckpt_best_name": "ckpt_best.pth",
69
+ "enable_qat": false,
70
+ "resume": false,
71
+ "resume_path": null,
72
+ "ckpt_name": "ckpt_latest.pth",
73
+ "resume_strict_load": false,
74
+ "sync_bn": false,
75
+ "kill_ddp_pgroup_on_end": true,
76
+ "max_train_batches": null,
77
+ "max_valid_batches": null,
78
+ "schema": {
79
+ "type": "object",
80
+ "properties": {
81
+ "max_epochs": {
82
+ "type": "number",
83
+ "minimum": 1
84
+ },
85
+ "lr_decay_factor": {
86
+ "type": "number",
87
+ "minimum": 0,
88
+ "maximum": 1
89
+ },
90
+ "lr_warmup_epochs": {
91
+ "type": "number",
92
+ "minimum": 0,
93
+ "maximum": 10
94
+ },
95
+ "initial_lr": {
96
+ "type": "number",
97
+ "exclusiveMinimum": 0,
98
+ "maximum": 10
99
+ }
100
+ },
101
+ "if": {
102
+ "properties": {
103
+ "lr_mode": {
104
+ "const": "step"
105
+ }
106
+ }
107
+ },
108
+ "then": {
109
+ "required": [
110
+ "lr_updates",
111
+ "lr_decay_factor"
112
+ ]
113
+ },
114
+ "required": [
115
+ "max_epochs",
116
+ "lr_mode",
117
+ "initial_lr",
118
+ "loss"
119
+ ]
120
+ },
121
+ "initial_lr": 0.0005,
122
+ "max_epochs": 15,
123
+ "loss": "PPYoloELoss(\n (static_assigner): ATSSAssigner()\n (assigner): TaskAlignedAssigner()\n)"
124
+ },
125
+ "dataset_params": {
126
+ "train_dataset_params": {
127
+ "data_dir": "/content/New-pothole-detection-2",
128
+ "images_dir": "/content/New-pothole-detection-2/train/images",
129
+ "labels_dir": "/content/New-pothole-detection-2/train/labels",
130
+ "classes": [
131
+ "-1",
132
+ "0",
133
+ "Pothole",
134
+ "Potholes",
135
+ "bache",
136
+ "manhole",
137
+ "object",
138
+ "porthole",
139
+ "pothole",
140
+ "potholes"
141
+ ],
142
+ "input_dim": "[640, 640]",
143
+ "cache_dir": null,
144
+ "cache": false,
145
+ "transforms": "[{'DetectionMosaic': {'input_dim': [640, 640], 'prob': 1.0}}, {'DetectionRandomAffine': {'degrees': 10.0, 'translate': 0.1, 'scales': [0.1, 2], 'shear': 2.0, 'target_size': [640, 640], 'filter_box_candidates': True, 'wh_thr': 2, 'area_thr': 0.1, 'ar_thr': 20}}, {'DetectionMixup': {'input_dim': [640, 640], 'mixup_scale': [0.5, 1.5], 'prob': 1.0, 'flip_prob': 0.5}}, {'DetectionHSV': {'prob': 1.0, 'hgain': 5, 'sgain': 30, 'vgain': 30}}, {'DetectionHorizontalFlip': {'prob': 0.5}}, {'DetectionPaddedRescale': {'input_dim': [640, 640], 'max_targets': 120}}, {'DetectionTargetsFormatTransform': {'input_dim': [640, 640], 'output_format': 'LABEL_CXCYWH'}}]",
146
+ "class_inclusion_list": null,
147
+ "max_num_samples": null
148
+ },
149
+ "train_dataloader_params": {
150
+ "batch_size": 16,
151
+ "num_workers": 2,
152
+ "shuffle": true,
153
+ "drop_last": true,
154
+ "pin_memory": true,
155
+ "collate_fn": "<super_gradients.training.utils.detection_utils.DetectionCollateFN object at 0x7f74b1f19660>"
156
+ },
157
+ "valid_dataset_params": {
158
+ "data_dir": "/content/New-pothole-detection-2",
159
+ "images_dir": "/content/New-pothole-detection-2/valid/images",
160
+ "labels_dir": "/content/New-pothole-detection-2/valid/labels",
161
+ "classes": [
162
+ "-1",
163
+ "0",
164
+ "Pothole",
165
+ "Potholes",
166
+ "bache",
167
+ "manhole",
168
+ "object",
169
+ "porthole",
170
+ "pothole",
171
+ "potholes"
172
+ ],
173
+ "input_dim": "[640, 640]",
174
+ "cache_dir": null,
175
+ "cache": false,
176
+ "transforms": "[{'DetectionPaddedRescale': {'input_dim': [640, 640]}}, {'DetectionTargetsFormatTransform': {'max_targets': 50, 'input_dim': [640, 640], 'output_format': 'LABEL_CXCYWH'}}]",
177
+ "class_inclusion_list": null,
178
+ "max_num_samples": null
179
+ },
180
+ "valid_dataloader_params": {
181
+ "batch_size": 16,
182
+ "num_workers": 2,
183
+ "drop_last": false,
184
+ "pin_memory": true,
185
+ "collate_fn": "<super_gradients.training.utils.detection_utils.DetectionCollateFN object at 0x7f74b17472b0>"
186
+ },
187
+ "schema": null
188
+ },
189
+ "additional_log_items": {
190
+ "initial_LR": 0.0005,
191
+ "num_devices": 1,
192
+ "multi_gpu": "None",
193
+ "device_type": "Tesla T4",
194
+ "installed_packages": [
195
+ "Babel 2.12.1",
196
+ "CacheControl 0.12.11",
197
+ "Cython 0.29.34",
198
+ "Deprecated 1.2.13",
199
+ "Flask 2.2.4",
200
+ "GDAL 3.3.2",
201
+ "Jinja2 3.1.2",
202
+ "LunarCalendar 0.0.9",
203
+ "Markdown 3.4.3",
204
+ "MarkupSafe 2.1.2",
205
+ "Pillow 9.5.0",
206
+ "PyDrive 1.3.1",
207
+ "PyMeeus 0.5.12",
208
+ "PyOpenGL 3.1.6",
209
+ "PySocks 1.7.1",
210
+ "PyWavelets 1.4.1",
211
+ "PyYAML 6.0",
212
+ "Pygments 2.14.0",
213
+ "SQLAlchemy 2.0.10",
214
+ "Send2Trash 1.8.0",
215
+ "Sphinx 4.0.3",
216
+ "Werkzeug 2.3.0",
217
+ "absl-py 1.4.0",
218
+ "alabaster 0.7.13",
219
+ "albumentations 1.2.1",
220
+ "altair 4.2.2",
221
+ "antlr4-python3-runtime 4.9.3",
222
+ "anyio 3.6.2",
223
+ "appdirs 1.4.4",
224
+ "argon2-cffi 21.3.0",
225
+ "argon2-cffi-bindings 21.2.0",
226
+ "array-record 0.2.0",
227
+ "arviz 0.15.1",
228
+ "astropy 5.2.2",
229
+ "astunparse 1.6.3",
230
+ "attrs 23.1.0",
231
+ "audioread 3.0.0",
232
+ "autograd 1.5",
233
+ "backcall 0.2.0",
234
+ "beautifulsoup4 4.11.2",
235
+ "bleach 6.0.0",
236
+ "blis 0.7.9",
237
+ "blosc2 2.0.0",
238
+ "bokeh 2.4.3",
239
+ "boto3 1.26.133",
240
+ "botocore 1.29.133",
241
+ "branca 0.6.0",
242
+ "build 0.10.0",
243
+ "cached-property 1.5.2",
244
+ "cachetools 5.3.0",
245
+ "catalogue 2.0.8",
246
+ "certifi 2022.12.7",
247
+ "cffi 1.15.1",
248
+ "chardet 4.0.0",
249
+ "charset-normalizer 2.0.12",
250
+ "chex 0.1.7",
251
+ "click 8.1.3",
252
+ "cloudpickle 2.2.1",
253
+ "cmake 3.25.2",
254
+ "cmdstanpy 1.1.0",
255
+ "colorcet 3.0.1",
256
+ "coloredlogs 15.0.1",
257
+ "colorlover 0.3.0",
258
+ "community 1.0.0b1",
259
+ "confection 0.0.4",
260
+ "cons 0.4.5",
261
+ "contextlib2 0.6.0.post1",
262
+ "contourpy 1.0.7",
263
+ "convertdate 2.4.0",
264
+ "coverage 5.3.1",
265
+ "cryptography 40.0.2",
266
+ "cufflinks 0.17.3",
267
+ "cupy-cuda11x 11.0.0",
268
+ "cvxopt 1.3.0",
269
+ "cvxpy 1.3.1",
270
+ "cycler 0.10.0",
271
+ "cymem 2.0.7",
272
+ "dask 2022.12.1",
273
+ "datascience 0.17.6",
274
+ "db-dtypes 1.1.1",
275
+ "debugpy 1.6.6",
276
+ "decorator 4.4.2",
277
+ "defusedxml 0.7.1",
278
+ "distributed 2022.12.1",
279
+ "dlib 19.24.1",
280
+ "dm-tree 0.1.8",
281
+ "docutils 0.16",
282
+ "dopamine-rl 4.0.6",
283
+ "duckdb 0.7.1",
284
+ "earthengine-api 0.1.350",
285
+ "easydict 1.10",
286
+ "ecos 2.0.12",
287
+ "editdistance 0.6.2",
288
+ "einops 0.3.2",
289
+ "en-core-web-sm 3.5.0",
290
+ "entrypoints 0.4",
291
+ "ephem 4.1.4",
292
+ "et-xmlfile 1.1.0",
293
+ "etils 1.2.0",
294
+ "etuples 0.3.8",
295
+ "exceptiongroup 1.1.1",
296
+ "fastai 2.7.12",
297
+ "fastcore 1.5.29",
298
+ "fastdownload 0.0.7",
299
+ "fastjsonschema 2.16.3",
300
+ "fastprogress 1.0.3",
301
+ "fastrlock 0.8.1",
302
+ "filelock 3.12.0",
303
+ "firebase-admin 5.3.0",
304
+ "flatbuffers 23.3.3",
305
+ "flax 0.6.9",
306
+ "folium 0.14.0",
307
+ "fonttools 4.39.3",
308
+ "frozendict 2.3.7",
309
+ "fsspec 2023.4.0",
310
+ "future 0.18.3",
311
+ "gast 0.4.0",
312
+ "gdown 4.6.6",
313
+ "gensim 4.3.1",
314
+ "geographiclib 2.0",
315
+ "geopy 2.3.0",
316
+ "gin-config 0.5.0",
317
+ "glob2 0.7",
318
+ "google 2.0.3",
319
+ "google-api-core 2.11.0",
320
+ "google-api-python-client 2.84.0",
321
+ "google-auth 2.17.3",
322
+ "google-auth-httplib2 0.1.0",
323
+ "google-auth-oauthlib 1.0.0",
324
+ "google-cloud-bigquery 3.9.0",
325
+ "google-cloud-bigquery-storage 2.19.1",
326
+ "google-cloud-core 2.3.2",
327
+ "google-cloud-datastore 2.15.1",
328
+ "google-cloud-firestore 2.11.0",
329
+ "google-cloud-language 2.9.1",
330
+ "google-cloud-storage 2.8.0",
331
+ "google-cloud-translate 3.11.1",
332
+ "google-colab 1.0.0",
333
+ "google-crc32c 1.5.0",
334
+ "google-pasta 0.2.0",
335
+ "google-resumable-media 2.5.0",
336
+ "googleapis-common-protos 1.59.0",
337
+ "googledrivedownloader 0.4",
338
+ "graphviz 0.20.1",
339
+ "greenlet 2.0.2",
340
+ "grpcio 1.54.0",
341
+ "grpcio-status 1.48.2",
342
+ "gspread 3.4.2",
343
+ "gspread-dataframe 3.0.8",
344
+ "gym 0.25.2",
345
+ "gym-notices 0.0.8",
346
+ "h5netcdf 1.1.0",
347
+ "h5py 3.8.0",
348
+ "hijri-converter 2.3.1",
349
+ "holidays 0.23",
350
+ "holoviews 1.15.4",
351
+ "html5lib 1.1",
352
+ "httpimport 1.3.0",
353
+ "httplib2 0.21.0",
354
+ "humanfriendly 10.0",
355
+ "humanize 4.6.0",
356
+ "hydra-core 1.3.2",
357
+ "hyperopt 0.2.7",
358
+ "idna 2.10",
359
+ "imageio 2.25.1",
360
+ "imageio-ffmpeg 0.4.8",
361
+ "imagesize 1.4.1",
362
+ "imbalanced-learn 0.10.1",
363
+ "imgaug 0.4.0",
364
+ "importlib-resources 5.12.0",
365
+ "imutils 0.5.4",
366
+ "inflect 6.0.4",
367
+ "iniconfig 2.0.0",
368
+ "intel-openmp 2023.1.0",
369
+ "ipykernel 5.5.6",
370
+ "ipython 7.34.0",
371
+ "ipython-genutils 0.2.0",
372
+ "ipython-sql 0.4.1",
373
+ "ipywidgets 7.7.1",
374
+ "itsdangerous 2.1.2",
375
+ "jax 0.4.8",
376
+ "jaxlib 0.4.7+cuda11.cudnn86",
377
+ "jieba 0.42.1",
378
+ "jmespath 1.0.1",
379
+ "joblib 1.2.0",
380
+ "json-tricks 3.16.1",
381
+ "jsonpickle 3.0.1",
382
+ "jsonschema 4.3.3",
383
+ "jupyter-client 6.1.12",
384
+ "jupyter-console 6.1.0",
385
+ "jupyter-core 5.3.0",
386
+ "jupyter-server 1.24.0",
387
+ "jupyterlab-pygments 0.2.2",
388
+ "jupyterlab-widgets 3.0.7",
389
+ "kaggle 1.5.13",
390
+ "keras 2.12.0",
391
+ "kiwisolver 1.4.4",
392
+ "korean-lunar-calendar 0.3.1",
393
+ "langcodes 3.3.0",
394
+ "lazy-loader 0.2",
395
+ "libclang 16.0.0",
396
+ "librosa 0.10.0.post2",
397
+ "lightgbm 3.3.5",
398
+ "lit 16.0.3",
399
+ "llvmlite 0.39.1",
400
+ "locket 1.0.0",
401
+ "logical-unification 0.4.5",
402
+ "lxml 4.9.2",
403
+ "markdown-it-py 2.2.0",
404
+ "matplotlib 3.7.1",
405
+ "matplotlib-inline 0.1.6",
406
+ "matplotlib-venn 0.11.9",
407
+ "mdurl 0.1.2",
408
+ "miniKanren 1.0.3",
409
+ "missingno 0.5.2",
410
+ "mistune 0.8.4",
411
+ "mizani 0.8.1",
412
+ "mkl 2019.0",
413
+ "ml-dtypes 0.1.0",
414
+ "mlxtend 0.14.0",
415
+ "more-itertools 9.1.0",
416
+ "moviepy 1.0.3",
417
+ "mpmath 1.3.0",
418
+ "msgpack 1.0.5",
419
+ "multipledispatch 0.6.0",
420
+ "multitasking 0.0.11",
421
+ "murmurhash 1.0.9",
422
+ "music21 8.1.0",
423
+ "natsort 8.3.1",
424
+ "nbclient 0.7.4",
425
+ "nbconvert 6.5.4",
426
+ "nbformat 5.8.0",
427
+ "nest-asyncio 1.5.6",
428
+ "networkx 3.1",
429
+ "nibabel 3.0.2",
430
+ "nltk 3.8.1",
431
+ "notebook 6.4.8",
432
+ "numba 0.56.4",
433
+ "numexpr 2.8.4",
434
+ "numpy 1.22.4",
435
+ "nvidia-cublas-cu11 11.10.3.66",
436
+ "nvidia-cuda-nvrtc-cu11 11.7.99",
437
+ "nvidia-cuda-runtime-cu11 11.7.99",
438
+ "nvidia-cudnn-cu11 8.5.0.96",
439
+ "oauth2client 4.1.3",
440
+ "oauthlib 3.2.2",
441
+ "omegaconf 2.3.0",
442
+ "onnx 1.13.0",
443
+ "onnx-simplifier 0.4.28",
444
+ "onnxruntime 1.13.1",
445
+ "opencv-contrib-python 4.7.0.72",
446
+ "opencv-python 4.7.0.72",
447
+ "opencv-python-headless 4.7.0.72",
448
+ "openpyxl 3.0.10",
449
+ "opt-einsum 3.3.0",
450
+ "optax 0.1.5",
451
+ "orbax-checkpoint 0.2.1",
452
+ "osqp 0.6.2.post8",
453
+ "packaging 23.1",
454
+ "palettable 3.3.3",
455
+ "pandas 1.5.3",
456
+ "pandas-datareader 0.10.0",
457
+ "pandas-gbq 0.17.9",
458
+ "pandocfilters 1.5.0",
459
+ "panel 0.14.4",
460
+ "param 1.13.0",
461
+ "parso 0.8.3",
462
+ "partd 1.4.0",
463
+ "pathlib 1.0.1",
464
+ "pathy 0.10.1",
465
+ "patsy 0.5.3",
466
+ "pexpect 4.8.0",
467
+ "pickleshare 0.7.5",
468
+ "pip 23.1.2",
469
+ "pip-tools 6.13.0",
470
+ "platformdirs 3.3.0",
471
+ "plotly 5.13.1",
472
+ "plotnine 0.10.1",
473
+ "pluggy 1.0.0",
474
+ "polars 0.17.3",
475
+ "pooch 1.6.0",
476
+ "portpicker 1.3.9",
477
+ "prefetch-generator 1.0.3",
478
+ "preshed 3.0.8",
479
+ "prettytable 0.7.2",
480
+ "proglog 0.1.10",
481
+ "progressbar2 4.2.0",
482
+ "prometheus-client 0.16.0",
483
+ "promise 2.3",
484
+ "prompt-toolkit 3.0.38",
485
+ "prophet 1.1.2",
486
+ "proto-plus 1.22.2",
487
+ "protobuf 3.20.3",
488
+ "psutil 5.9.5",
489
+ "psycopg2 2.9.6",
490
+ "ptyprocess 0.7.0",
491
+ "py4j 0.10.9.7",
492
+ "pyDeprecate 0.3.2",
493
+ "py-cpuinfo 9.0.0",
494
+ "pyarrow 9.0.0",
495
+ "pyasn1 0.5.0",
496
+ "pyasn1-modules 0.3.0",
497
+ "pycocotools 2.0.4",
498
+ "pycparser 2.21",
499
+ "pyct 0.5.0",
500
+ "pydantic 1.10.7",
501
+ "pydata-google-auth 1.7.0",
502
+ "pydot 1.4.2",
503
+ "pydot-ng 2.0.0",
504
+ "pydotplus 2.0.2",
505
+ "pyerfa 2.0.0.3",
506
+ "pygame 2.3.0",
507
+ "pymc 5.1.2",
508
+ "pymystem3 0.2.0",
509
+ "pyparsing 2.4.7",
510
+ "pyproject-hooks 1.0.0",
511
+ "pyrsistent 0.19.3",
512
+ "pytensor 2.10.1",
513
+ "pytest 7.2.2",
514
+ "python-apt 0.0.0",
515
+ "python-dateutil 2.8.2",
516
+ "python-dotenv 1.0.0",
517
+ "python-louvain 0.16",
518
+ "python-slugify 8.0.1",
519
+ "python-utils 3.5.2",
520
+ "pytube 15.0.0",
521
+ "pytz 2022.7.1",
522
+ "pytz-deprecation-shim 0.1.0.post0",
523
+ "pyviz-comms 2.2.1",
524
+ "pyzmq 23.2.1",
525
+ "qdldl 0.1.7",
526
+ "qudida 0.0.4",
527
+ "rapidfuzz 3.0.0",
528
+ "regex 2022.10.31",
529
+ "requests 2.27.1",
530
+ "requests-oauthlib 1.3.1",
531
+ "requests-toolbelt 1.0.0",
532
+ "requirements-parser 0.5.0",
533
+ "rich 13.3.4",
534
+ "roboflow 1.0.8",
535
+ "rpy2 3.5.5",
536
+ "rsa 4.9",
537
+ "s3transfer 0.6.1",
538
+ "scikit-image 0.19.3",
539
+ "scikit-learn 1.2.2",
540
+ "scipy 1.10.1",
541
+ "scs 3.2.3",
542
+ "seaborn 0.12.2",
543
+ "setuptools 67.7.2",
544
+ "shapely 2.0.1",
545
+ "six 1.16.0",
546
+ "sklearn-pandas 2.2.0",
547
+ "smart-open 6.3.0",
548
+ "sniffio 1.3.0",
549
+ "snowballstemmer 2.2.0",
550
+ "sortedcontainers 2.4.0",
551
+ "soundfile 0.12.1",
552
+ "soupsieve 2.4.1",
553
+ "soxr 0.3.5",
554
+ "spacy 3.5.2",
555
+ "spacy-legacy 3.0.12",
556
+ "spacy-loggers 1.0.4",
557
+ "sphinx-rtd-theme 1.2.0",
558
+ "sphinxcontrib-applehelp 1.0.4",
559
+ "sphinxcontrib-devhelp 1.0.2",
560
+ "sphinxcontrib-htmlhelp 2.0.1",
561
+ "sphinxcontrib-jquery 4.1",
562
+ "sphinxcontrib-jsmath 1.0.1",
563
+ "sphinxcontrib-qthelp 1.0.3",
564
+ "sphinxcontrib-serializinghtml 1.1.5",
565
+ "sqlparse 0.4.4",
566
+ "srsly 2.4.6",
567
+ "statsmodels 0.13.5",
568
+ "stringcase 1.2.0",
569
+ "super-gradients 3.1.0",
570
+ "sympy 1.11.1",
571
+ "tables 3.8.0",
572
+ "tabulate 0.8.10",
573
+ "tblib 1.7.0",
574
+ "tenacity 8.2.2",
575
+ "tensorboard 2.12.2",
576
+ "tensorboard-data-server 0.7.0",
577
+ "tensorboard-plugin-wit 1.8.1",
578
+ "tensorflow 2.12.0",
579
+ "tensorflow-datasets 4.9.2",
580
+ "tensorflow-estimator 2.12.0",
581
+ "tensorflow-gcs-config 2.12.0",
582
+ "tensorflow-hub 0.13.0",
583
+ "tensorflow-io-gcs-filesystem 0.32.0",
584
+ "tensorflow-metadata 1.13.1",
585
+ "tensorflow-probability 0.19.0",
586
+ "tensorstore 0.1.36",
587
+ "termcolor 1.1.0",
588
+ "terminado 0.17.1",
589
+ "text-unidecode 1.3",
590
+ "textblob 0.17.1",
591
+ "tf-slim 1.1.0",
592
+ "thinc 8.1.9",
593
+ "threadpoolctl 3.1.0",
594
+ "tifffile 2023.4.12",
595
+ "tinycss2 1.2.1",
596
+ "toml 0.10.2",
597
+ "tomli 2.0.1",
598
+ "toolz 0.12.0",
599
+ "torch 1.13.1",
600
+ "torchaudio 2.0.1+cu118",
601
+ "torchdata 0.6.0",
602
+ "torchinfo 1.7.2",
603
+ "torchmetrics 0.8.0",
604
+ "torchsummary 1.5.1",
605
+ "torchtext 0.15.1",
606
+ "torchvision 0.14.1",
607
+ "tornado 6.3.1",
608
+ "tqdm 4.65.0",
609
+ "traitlets 5.7.1",
610
+ "treelib 1.6.1",
611
+ "triton 2.0.0",
612
+ "tweepy 4.13.0",
613
+ "typer 0.7.0",
614
+ "types-setuptools 67.7.0.2",
615
+ "typing-extensions 4.5.0",
616
+ "tzdata 2023.3",
617
+ "tzlocal 4.3",
618
+ "uritemplate 4.1.1",
619
+ "urllib3 1.26.15",
620
+ "vega-datasets 0.9.0",
621
+ "wasabi 1.1.1",
622
+ "wcwidth 0.2.6",
623
+ "webcolors 1.13",
624
+ "webencodings 0.5.1",
625
+ "websocket-client 1.5.1",
626
+ "wget 3.2",
627
+ "wheel 0.40.0",
628
+ "widgetsnbextension 3.6.4",
629
+ "wordcloud 1.8.2.2",
630
+ "wrapt 1.14.1",
631
+ "xarray 2022.12.0",
632
+ "xarray-einstats 0.5.1",
633
+ "xgboost 1.7.5",
634
+ "xlrd 2.0.1",
635
+ "yellowbrick 1.5",
636
+ "yfinance 0.2.18",
637
+ "youtube-dl 2021.12.17",
638
+ "zict 3.0.0",
639
+ "zipp 3.15.0",
640
+ "PyGObject 3.36.0",
641
+ "dbus-python 1.2.16",
642
+ "requests-unixsocket 0.2.0"
643
+ ]
644
+ }
645
+ }
646
+ ------- config parameters end --------
my_first_yolonas_run/experiment_logs_May13_17_13_58.txt ADDED
@@ -0,0 +1,706 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ --------- config parameters ----------
2
+ {
3
+ "arch_params": {
4
+ "schema": null
5
+ },
6
+ "checkpoint_params": {
7
+ "load_checkpoint": false,
8
+ "schema": null
9
+ },
10
+ "training_hyperparams": {
11
+ "lr_warmup_epochs": 3,
12
+ "lr_warmup_steps": 0,
13
+ "lr_cooldown_epochs": 0,
14
+ "warmup_initial_lr": 1e-06,
15
+ "cosine_final_lr_ratio": 0.1,
16
+ "optimizer": "Adam",
17
+ "optimizer_params": {
18
+ "weight_decay": 0.0001
19
+ },
20
+ "criterion_params": {},
21
+ "ema": true,
22
+ "batch_accumulate": 1,
23
+ "ema_params": {
24
+ "decay": 0.9,
25
+ "decay_type": "threshold"
26
+ },
27
+ "zero_weight_decay_on_bias_and_bn": true,
28
+ "load_opt_params": true,
29
+ "run_validation_freq": 1,
30
+ "save_model": true,
31
+ "metric_to_watch": "[email protected]",
32
+ "launch_tensorboard": false,
33
+ "tb_files_user_prompt": false,
34
+ "silent_mode": true,
35
+ "mixed_precision": true,
36
+ "tensorboard_port": null,
37
+ "save_ckpt_epoch_list": [],
38
+ "average_best_models": true,
39
+ "dataset_statistics": false,
40
+ "save_tensorboard_to_s3": false,
41
+ "lr_schedule_function": null,
42
+ "train_metrics_list": [],
43
+ "valid_metrics_list": [
44
+ "DetectionMetrics_050(\n (post_prediction_callback): PPYoloEPostPredictionCallback()\n)"
45
+ ],
46
+ "greater_metric_to_watch_is_better": true,
47
+ "precise_bn": false,
48
+ "precise_bn_batch_size": null,
49
+ "seed": 42,
50
+ "lr_mode": "cosine",
51
+ "phase_callbacks": null,
52
+ "log_installed_packages": true,
53
+ "sg_logger": "base_sg_logger",
54
+ "sg_logger_params": {
55
+ "tb_files_user_prompt": false,
56
+ "project_name": "",
57
+ "launch_tensorboard": false,
58
+ "tensorboard_port": null,
59
+ "save_checkpoints_remote": false,
60
+ "save_tensorboard_remote": false,
61
+ "save_logs_remote": false
62
+ },
63
+ "warmup_mode": "linear_epoch_step",
64
+ "step_lr_update_freq": null,
65
+ "lr_updates": [],
66
+ "clip_grad_norm": null,
67
+ "pre_prediction_callback": null,
68
+ "ckpt_best_name": "ckpt_best.pth",
69
+ "enable_qat": false,
70
+ "resume": false,
71
+ "resume_path": null,
72
+ "ckpt_name": "ckpt_latest.pth",
73
+ "resume_strict_load": false,
74
+ "sync_bn": false,
75
+ "kill_ddp_pgroup_on_end": true,
76
+ "max_train_batches": null,
77
+ "max_valid_batches": null,
78
+ "schema": {
79
+ "type": "object",
80
+ "properties": {
81
+ "max_epochs": {
82
+ "type": "number",
83
+ "minimum": 1
84
+ },
85
+ "lr_decay_factor": {
86
+ "type": "number",
87
+ "minimum": 0,
88
+ "maximum": 1
89
+ },
90
+ "lr_warmup_epochs": {
91
+ "type": "number",
92
+ "minimum": 0,
93
+ "maximum": 10
94
+ },
95
+ "initial_lr": {
96
+ "type": "number",
97
+ "exclusiveMinimum": 0,
98
+ "maximum": 10
99
+ }
100
+ },
101
+ "if": {
102
+ "properties": {
103
+ "lr_mode": {
104
+ "const": "step"
105
+ }
106
+ }
107
+ },
108
+ "then": {
109
+ "required": [
110
+ "lr_updates",
111
+ "lr_decay_factor"
112
+ ]
113
+ },
114
+ "required": [
115
+ "max_epochs",
116
+ "lr_mode",
117
+ "initial_lr",
118
+ "loss"
119
+ ]
120
+ },
121
+ "initial_lr": 0.0005,
122
+ "max_epochs": 15,
123
+ "loss": "PPYoloELoss(\n (static_assigner): ATSSAssigner()\n (assigner): TaskAlignedAssigner()\n)"
124
+ },
125
+ "dataset_params": {
126
+ "train_dataset_params": {
127
+ "data_dir": "/content/New-pothole-detection-2",
128
+ "images_dir": "/content/New-pothole-detection-2/train/images",
129
+ "labels_dir": "/content/New-pothole-detection-2/train/labels",
130
+ "classes": [
131
+ "-1",
132
+ "0",
133
+ "Pothole",
134
+ "Potholes",
135
+ "bache",
136
+ "manhole",
137
+ "object",
138
+ "porthole",
139
+ "pothole",
140
+ "potholes"
141
+ ],
142
+ "input_dim": "[640, 640]",
143
+ "cache_dir": null,
144
+ "cache": false,
145
+ "transforms": "[{'DetectionMosaic': {'input_dim': [640, 640], 'prob': 1.0}}, {'DetectionRandomAffine': {'degrees': 10.0, 'translate': 0.1, 'scales': [0.1, 2], 'shear': 2.0, 'target_size': [640, 640], 'filter_box_candidates': True, 'wh_thr': 2, 'area_thr': 0.1, 'ar_thr': 20}}, {'DetectionMixup': {'input_dim': [640, 640], 'mixup_scale': [0.5, 1.5], 'prob': 1.0, 'flip_prob': 0.5}}, {'DetectionHSV': {'prob': 1.0, 'hgain': 5, 'sgain': 30, 'vgain': 30}}, {'DetectionHorizontalFlip': {'prob': 0.5}}, {'DetectionPaddedRescale': {'input_dim': [640, 640], 'max_targets': 120}}, {'DetectionTargetsFormatTransform': {'input_dim': [640, 640], 'output_format': 'LABEL_CXCYWH'}}]",
146
+ "class_inclusion_list": null,
147
+ "max_num_samples": null
148
+ },
149
+ "train_dataloader_params": {
150
+ "batch_size": 16,
151
+ "num_workers": 2,
152
+ "shuffle": true,
153
+ "drop_last": true,
154
+ "pin_memory": true,
155
+ "collate_fn": "<super_gradients.training.utils.detection_utils.DetectionCollateFN object at 0x7f74b1f19660>"
156
+ },
157
+ "valid_dataset_params": {
158
+ "data_dir": "/content/New-pothole-detection-2",
159
+ "images_dir": "/content/New-pothole-detection-2/valid/images",
160
+ "labels_dir": "/content/New-pothole-detection-2/valid/labels",
161
+ "classes": [
162
+ "-1",
163
+ "0",
164
+ "Pothole",
165
+ "Potholes",
166
+ "bache",
167
+ "manhole",
168
+ "object",
169
+ "porthole",
170
+ "pothole",
171
+ "potholes"
172
+ ],
173
+ "input_dim": "[640, 640]",
174
+ "cache_dir": null,
175
+ "cache": false,
176
+ "transforms": "[{'DetectionPaddedRescale': {'input_dim': [640, 640]}}, {'DetectionTargetsFormatTransform': {'max_targets': 50, 'input_dim': [640, 640], 'output_format': 'LABEL_CXCYWH'}}]",
177
+ "class_inclusion_list": null,
178
+ "max_num_samples": null
179
+ },
180
+ "valid_dataloader_params": {
181
+ "batch_size": 16,
182
+ "num_workers": 2,
183
+ "drop_last": false,
184
+ "pin_memory": true,
185
+ "collate_fn": "<super_gradients.training.utils.detection_utils.DetectionCollateFN object at 0x7f74b17472b0>"
186
+ },
187
+ "schema": null
188
+ },
189
+ "additional_log_items": {
190
+ "initial_LR": 0.0005,
191
+ "num_devices": 1,
192
+ "multi_gpu": "None",
193
+ "device_type": "Tesla T4",
194
+ "installed_packages": [
195
+ "Babel 2.12.1",
196
+ "CacheControl 0.12.11",
197
+ "Cython 0.29.34",
198
+ "Deprecated 1.2.13",
199
+ "Flask 2.2.4",
200
+ "GDAL 3.3.2",
201
+ "Jinja2 3.1.2",
202
+ "LunarCalendar 0.0.9",
203
+ "Markdown 3.4.3",
204
+ "MarkupSafe 2.1.2",
205
+ "Pillow 9.5.0",
206
+ "PyDrive 1.3.1",
207
+ "PyMeeus 0.5.12",
208
+ "PyOpenGL 3.1.6",
209
+ "PySocks 1.7.1",
210
+ "PyWavelets 1.4.1",
211
+ "PyYAML 6.0",
212
+ "Pygments 2.14.0",
213
+ "SQLAlchemy 2.0.10",
214
+ "Send2Trash 1.8.0",
215
+ "Sphinx 4.0.3",
216
+ "Werkzeug 2.3.0",
217
+ "absl-py 1.4.0",
218
+ "alabaster 0.7.13",
219
+ "albumentations 1.2.1",
220
+ "altair 4.2.2",
221
+ "antlr4-python3-runtime 4.9.3",
222
+ "anyio 3.6.2",
223
+ "appdirs 1.4.4",
224
+ "argon2-cffi 21.3.0",
225
+ "argon2-cffi-bindings 21.2.0",
226
+ "array-record 0.2.0",
227
+ "arviz 0.15.1",
228
+ "astropy 5.2.2",
229
+ "astunparse 1.6.3",
230
+ "attrs 23.1.0",
231
+ "audioread 3.0.0",
232
+ "autograd 1.5",
233
+ "backcall 0.2.0",
234
+ "beautifulsoup4 4.11.2",
235
+ "bleach 6.0.0",
236
+ "blis 0.7.9",
237
+ "blosc2 2.0.0",
238
+ "bokeh 2.4.3",
239
+ "boto3 1.26.133",
240
+ "botocore 1.29.133",
241
+ "branca 0.6.0",
242
+ "build 0.10.0",
243
+ "cached-property 1.5.2",
244
+ "cachetools 5.3.0",
245
+ "catalogue 2.0.8",
246
+ "certifi 2022.12.7",
247
+ "cffi 1.15.1",
248
+ "chardet 4.0.0",
249
+ "charset-normalizer 2.0.12",
250
+ "chex 0.1.7",
251
+ "click 8.1.3",
252
+ "cloudpickle 2.2.1",
253
+ "cmake 3.25.2",
254
+ "cmdstanpy 1.1.0",
255
+ "colorcet 3.0.1",
256
+ "coloredlogs 15.0.1",
257
+ "colorlover 0.3.0",
258
+ "community 1.0.0b1",
259
+ "confection 0.0.4",
260
+ "cons 0.4.5",
261
+ "contextlib2 0.6.0.post1",
262
+ "contourpy 1.0.7",
263
+ "convertdate 2.4.0",
264
+ "coverage 5.3.1",
265
+ "cryptography 40.0.2",
266
+ "cufflinks 0.17.3",
267
+ "cupy-cuda11x 11.0.0",
268
+ "cvxopt 1.3.0",
269
+ "cvxpy 1.3.1",
270
+ "cycler 0.10.0",
271
+ "cymem 2.0.7",
272
+ "dask 2022.12.1",
273
+ "datascience 0.17.6",
274
+ "db-dtypes 1.1.1",
275
+ "debugpy 1.6.6",
276
+ "decorator 4.4.2",
277
+ "defusedxml 0.7.1",
278
+ "distributed 2022.12.1",
279
+ "dlib 19.24.1",
280
+ "dm-tree 0.1.8",
281
+ "docutils 0.16",
282
+ "dopamine-rl 4.0.6",
283
+ "duckdb 0.7.1",
284
+ "earthengine-api 0.1.350",
285
+ "easydict 1.10",
286
+ "ecos 2.0.12",
287
+ "editdistance 0.6.2",
288
+ "einops 0.3.2",
289
+ "en-core-web-sm 3.5.0",
290
+ "entrypoints 0.4",
291
+ "ephem 4.1.4",
292
+ "et-xmlfile 1.1.0",
293
+ "etils 1.2.0",
294
+ "etuples 0.3.8",
295
+ "exceptiongroup 1.1.1",
296
+ "fastai 2.7.12",
297
+ "fastcore 1.5.29",
298
+ "fastdownload 0.0.7",
299
+ "fastjsonschema 2.16.3",
300
+ "fastprogress 1.0.3",
301
+ "fastrlock 0.8.1",
302
+ "filelock 3.12.0",
303
+ "firebase-admin 5.3.0",
304
+ "flatbuffers 23.3.3",
305
+ "flax 0.6.9",
306
+ "folium 0.14.0",
307
+ "fonttools 4.39.3",
308
+ "frozendict 2.3.7",
309
+ "fsspec 2023.4.0",
310
+ "future 0.18.3",
311
+ "gast 0.4.0",
312
+ "gdown 4.6.6",
313
+ "gensim 4.3.1",
314
+ "geographiclib 2.0",
315
+ "geopy 2.3.0",
316
+ "gin-config 0.5.0",
317
+ "glob2 0.7",
318
+ "google 2.0.3",
319
+ "google-api-core 2.11.0",
320
+ "google-api-python-client 2.84.0",
321
+ "google-auth 2.17.3",
322
+ "google-auth-httplib2 0.1.0",
323
+ "google-auth-oauthlib 1.0.0",
324
+ "google-cloud-bigquery 3.9.0",
325
+ "google-cloud-bigquery-storage 2.19.1",
326
+ "google-cloud-core 2.3.2",
327
+ "google-cloud-datastore 2.15.1",
328
+ "google-cloud-firestore 2.11.0",
329
+ "google-cloud-language 2.9.1",
330
+ "google-cloud-storage 2.8.0",
331
+ "google-cloud-translate 3.11.1",
332
+ "google-colab 1.0.0",
333
+ "google-crc32c 1.5.0",
334
+ "google-pasta 0.2.0",
335
+ "google-resumable-media 2.5.0",
336
+ "googleapis-common-protos 1.59.0",
337
+ "googledrivedownloader 0.4",
338
+ "graphviz 0.20.1",
339
+ "greenlet 2.0.2",
340
+ "grpcio 1.54.0",
341
+ "grpcio-status 1.48.2",
342
+ "gspread 3.4.2",
343
+ "gspread-dataframe 3.0.8",
344
+ "gym 0.25.2",
345
+ "gym-notices 0.0.8",
346
+ "h5netcdf 1.1.0",
347
+ "h5py 3.8.0",
348
+ "hijri-converter 2.3.1",
349
+ "holidays 0.23",
350
+ "holoviews 1.15.4",
351
+ "html5lib 1.1",
352
+ "httpimport 1.3.0",
353
+ "httplib2 0.21.0",
354
+ "humanfriendly 10.0",
355
+ "humanize 4.6.0",
356
+ "hydra-core 1.3.2",
357
+ "hyperopt 0.2.7",
358
+ "idna 2.10",
359
+ "imageio 2.25.1",
360
+ "imageio-ffmpeg 0.4.8",
361
+ "imagesize 1.4.1",
362
+ "imbalanced-learn 0.10.1",
363
+ "imgaug 0.4.0",
364
+ "importlib-resources 5.12.0",
365
+ "imutils 0.5.4",
366
+ "inflect 6.0.4",
367
+ "iniconfig 2.0.0",
368
+ "intel-openmp 2023.1.0",
369
+ "ipykernel 5.5.6",
370
+ "ipython 7.34.0",
371
+ "ipython-genutils 0.2.0",
372
+ "ipython-sql 0.4.1",
373
+ "ipywidgets 7.7.1",
374
+ "itsdangerous 2.1.2",
375
+ "jax 0.4.8",
376
+ "jaxlib 0.4.7+cuda11.cudnn86",
377
+ "jieba 0.42.1",
378
+ "jmespath 1.0.1",
379
+ "joblib 1.2.0",
380
+ "json-tricks 3.16.1",
381
+ "jsonpickle 3.0.1",
382
+ "jsonschema 4.3.3",
383
+ "jupyter-client 6.1.12",
384
+ "jupyter-console 6.1.0",
385
+ "jupyter-core 5.3.0",
386
+ "jupyter-server 1.24.0",
387
+ "jupyterlab-pygments 0.2.2",
388
+ "jupyterlab-widgets 3.0.7",
389
+ "kaggle 1.5.13",
390
+ "keras 2.12.0",
391
+ "kiwisolver 1.4.4",
392
+ "korean-lunar-calendar 0.3.1",
393
+ "langcodes 3.3.0",
394
+ "lazy-loader 0.2",
395
+ "libclang 16.0.0",
396
+ "librosa 0.10.0.post2",
397
+ "lightgbm 3.3.5",
398
+ "lit 16.0.3",
399
+ "llvmlite 0.39.1",
400
+ "locket 1.0.0",
401
+ "logical-unification 0.4.5",
402
+ "lxml 4.9.2",
403
+ "markdown-it-py 2.2.0",
404
+ "matplotlib 3.7.1",
405
+ "matplotlib-inline 0.1.6",
406
+ "matplotlib-venn 0.11.9",
407
+ "mdurl 0.1.2",
408
+ "miniKanren 1.0.3",
409
+ "missingno 0.5.2",
410
+ "mistune 0.8.4",
411
+ "mizani 0.8.1",
412
+ "mkl 2019.0",
413
+ "ml-dtypes 0.1.0",
414
+ "mlxtend 0.14.0",
415
+ "more-itertools 9.1.0",
416
+ "moviepy 1.0.3",
417
+ "mpmath 1.3.0",
418
+ "msgpack 1.0.5",
419
+ "multipledispatch 0.6.0",
420
+ "multitasking 0.0.11",
421
+ "murmurhash 1.0.9",
422
+ "music21 8.1.0",
423
+ "natsort 8.3.1",
424
+ "nbclient 0.7.4",
425
+ "nbconvert 6.5.4",
426
+ "nbformat 5.8.0",
427
+ "nest-asyncio 1.5.6",
428
+ "networkx 3.1",
429
+ "nibabel 3.0.2",
430
+ "nltk 3.8.1",
431
+ "notebook 6.4.8",
432
+ "numba 0.56.4",
433
+ "numexpr 2.8.4",
434
+ "numpy 1.22.4",
435
+ "nvidia-cublas-cu11 11.10.3.66",
436
+ "nvidia-cuda-nvrtc-cu11 11.7.99",
437
+ "nvidia-cuda-runtime-cu11 11.7.99",
438
+ "nvidia-cudnn-cu11 8.5.0.96",
439
+ "oauth2client 4.1.3",
440
+ "oauthlib 3.2.2",
441
+ "omegaconf 2.3.0",
442
+ "onnx 1.13.0",
443
+ "onnx-simplifier 0.4.28",
444
+ "onnxruntime 1.13.1",
445
+ "opencv-contrib-python 4.7.0.72",
446
+ "opencv-python 4.7.0.72",
447
+ "opencv-python-headless 4.7.0.72",
448
+ "openpyxl 3.0.10",
449
+ "opt-einsum 3.3.0",
450
+ "optax 0.1.5",
451
+ "orbax-checkpoint 0.2.1",
452
+ "osqp 0.6.2.post8",
453
+ "packaging 23.1",
454
+ "palettable 3.3.3",
455
+ "pandas 1.5.3",
456
+ "pandas-datareader 0.10.0",
457
+ "pandas-gbq 0.17.9",
458
+ "pandocfilters 1.5.0",
459
+ "panel 0.14.4",
460
+ "param 1.13.0",
461
+ "parso 0.8.3",
462
+ "partd 1.4.0",
463
+ "pathlib 1.0.1",
464
+ "pathy 0.10.1",
465
+ "patsy 0.5.3",
466
+ "pexpect 4.8.0",
467
+ "pickleshare 0.7.5",
468
+ "pip 23.1.2",
469
+ "pip-tools 6.13.0",
470
+ "platformdirs 3.3.0",
471
+ "plotly 5.13.1",
472
+ "plotnine 0.10.1",
473
+ "pluggy 1.0.0",
474
+ "polars 0.17.3",
475
+ "pooch 1.6.0",
476
+ "portpicker 1.3.9",
477
+ "prefetch-generator 1.0.3",
478
+ "preshed 3.0.8",
479
+ "prettytable 0.7.2",
480
+ "proglog 0.1.10",
481
+ "progressbar2 4.2.0",
482
+ "prometheus-client 0.16.0",
483
+ "promise 2.3",
484
+ "prompt-toolkit 3.0.38",
485
+ "prophet 1.1.2",
486
+ "proto-plus 1.22.2",
487
+ "protobuf 3.20.3",
488
+ "psutil 5.9.5",
489
+ "psycopg2 2.9.6",
490
+ "ptyprocess 0.7.0",
491
+ "py4j 0.10.9.7",
492
+ "pyDeprecate 0.3.2",
493
+ "py-cpuinfo 9.0.0",
494
+ "pyarrow 9.0.0",
495
+ "pyasn1 0.5.0",
496
+ "pyasn1-modules 0.3.0",
497
+ "pycocotools 2.0.4",
498
+ "pycparser 2.21",
499
+ "pyct 0.5.0",
500
+ "pydantic 1.10.7",
501
+ "pydata-google-auth 1.7.0",
502
+ "pydot 1.4.2",
503
+ "pydot-ng 2.0.0",
504
+ "pydotplus 2.0.2",
505
+ "pyerfa 2.0.0.3",
506
+ "pygame 2.3.0",
507
+ "pymc 5.1.2",
508
+ "pymystem3 0.2.0",
509
+ "pyparsing 2.4.7",
510
+ "pyproject-hooks 1.0.0",
511
+ "pyrsistent 0.19.3",
512
+ "pytensor 2.10.1",
513
+ "pytest 7.2.2",
514
+ "python-apt 0.0.0",
515
+ "python-dateutil 2.8.2",
516
+ "python-dotenv 1.0.0",
517
+ "python-louvain 0.16",
518
+ "python-slugify 8.0.1",
519
+ "python-utils 3.5.2",
520
+ "pytube 15.0.0",
521
+ "pytz 2022.7.1",
522
+ "pytz-deprecation-shim 0.1.0.post0",
523
+ "pyviz-comms 2.2.1",
524
+ "pyzmq 23.2.1",
525
+ "qdldl 0.1.7",
526
+ "qudida 0.0.4",
527
+ "rapidfuzz 3.0.0",
528
+ "regex 2022.10.31",
529
+ "requests 2.27.1",
530
+ "requests-oauthlib 1.3.1",
531
+ "requests-toolbelt 1.0.0",
532
+ "requirements-parser 0.5.0",
533
+ "rich 13.3.4",
534
+ "roboflow 1.0.8",
535
+ "rpy2 3.5.5",
536
+ "rsa 4.9",
537
+ "s3transfer 0.6.1",
538
+ "scikit-image 0.19.3",
539
+ "scikit-learn 1.2.2",
540
+ "scipy 1.10.1",
541
+ "scs 3.2.3",
542
+ "seaborn 0.12.2",
543
+ "setuptools 67.7.2",
544
+ "shapely 2.0.1",
545
+ "six 1.16.0",
546
+ "sklearn-pandas 2.2.0",
547
+ "smart-open 6.3.0",
548
+ "sniffio 1.3.0",
549
+ "snowballstemmer 2.2.0",
550
+ "sortedcontainers 2.4.0",
551
+ "soundfile 0.12.1",
552
+ "soupsieve 2.4.1",
553
+ "soxr 0.3.5",
554
+ "spacy 3.5.2",
555
+ "spacy-legacy 3.0.12",
556
+ "spacy-loggers 1.0.4",
557
+ "sphinx-rtd-theme 1.2.0",
558
+ "sphinxcontrib-applehelp 1.0.4",
559
+ "sphinxcontrib-devhelp 1.0.2",
560
+ "sphinxcontrib-htmlhelp 2.0.1",
561
+ "sphinxcontrib-jquery 4.1",
562
+ "sphinxcontrib-jsmath 1.0.1",
563
+ "sphinxcontrib-qthelp 1.0.3",
564
+ "sphinxcontrib-serializinghtml 1.1.5",
565
+ "sqlparse 0.4.4",
566
+ "srsly 2.4.6",
567
+ "statsmodels 0.13.5",
568
+ "stringcase 1.2.0",
569
+ "super-gradients 3.1.0",
570
+ "sympy 1.11.1",
571
+ "tables 3.8.0",
572
+ "tabulate 0.8.10",
573
+ "tblib 1.7.0",
574
+ "tenacity 8.2.2",
575
+ "tensorboard 2.12.2",
576
+ "tensorboard-data-server 0.7.0",
577
+ "tensorboard-plugin-wit 1.8.1",
578
+ "tensorflow 2.12.0",
579
+ "tensorflow-datasets 4.9.2",
580
+ "tensorflow-estimator 2.12.0",
581
+ "tensorflow-gcs-config 2.12.0",
582
+ "tensorflow-hub 0.13.0",
583
+ "tensorflow-io-gcs-filesystem 0.32.0",
584
+ "tensorflow-metadata 1.13.1",
585
+ "tensorflow-probability 0.19.0",
586
+ "tensorstore 0.1.36",
587
+ "termcolor 1.1.0",
588
+ "terminado 0.17.1",
589
+ "text-unidecode 1.3",
590
+ "textblob 0.17.1",
591
+ "tf-slim 1.1.0",
592
+ "thinc 8.1.9",
593
+ "threadpoolctl 3.1.0",
594
+ "tifffile 2023.4.12",
595
+ "tinycss2 1.2.1",
596
+ "toml 0.10.2",
597
+ "tomli 2.0.1",
598
+ "toolz 0.12.0",
599
+ "torch 1.13.1",
600
+ "torchaudio 2.0.1+cu118",
601
+ "torchdata 0.6.0",
602
+ "torchinfo 1.7.2",
603
+ "torchmetrics 0.8.0",
604
+ "torchsummary 1.5.1",
605
+ "torchtext 0.15.1",
606
+ "torchvision 0.14.1",
607
+ "tornado 6.3.1",
608
+ "tqdm 4.65.0",
609
+ "traitlets 5.7.1",
610
+ "treelib 1.6.1",
611
+ "triton 2.0.0",
612
+ "tweepy 4.13.0",
613
+ "typer 0.7.0",
614
+ "types-setuptools 67.7.0.2",
615
+ "typing-extensions 4.5.0",
616
+ "tzdata 2023.3",
617
+ "tzlocal 4.3",
618
+ "uritemplate 4.1.1",
619
+ "urllib3 1.26.15",
620
+ "vega-datasets 0.9.0",
621
+ "wasabi 1.1.1",
622
+ "wcwidth 0.2.6",
623
+ "webcolors 1.13",
624
+ "webencodings 0.5.1",
625
+ "websocket-client 1.5.1",
626
+ "wget 3.2",
627
+ "wheel 0.40.0",
628
+ "widgetsnbextension 3.6.4",
629
+ "wordcloud 1.8.2.2",
630
+ "wrapt 1.14.1",
631
+ "xarray 2022.12.0",
632
+ "xarray-einstats 0.5.1",
633
+ "xgboost 1.7.5",
634
+ "xlrd 2.0.1",
635
+ "yellowbrick 1.5",
636
+ "yfinance 0.2.18",
637
+ "youtube-dl 2021.12.17",
638
+ "zict 3.0.0",
639
+ "zipp 3.15.0",
640
+ "PyGObject 3.36.0",
641
+ "dbus-python 1.2.16",
642
+ "requests-unixsocket 0.2.0"
643
+ ]
644
+ }
645
+ }
646
+ ------- config parameters end --------
647
+
648
+ Epoch 0 (1/15) - Train_PPYoloELoss/loss_cls: 1.6962181329727173 Train_PPYoloELoss/loss_iou: 0.2994749844074249 Train_PPYoloELoss/loss_dfl: 1.5699489116668701 Train_PPYoloELoss/loss: 3.2298800945281982 Valid_PPYoloELoss/loss_cls: 1.5147238969802856 Valid_PPYoloELoss/loss_iou: 0.27392876148223877 Valid_PPYoloELoss/loss_dfl: 1.4811557531356812 Valid_PPYoloELoss/loss: 2.9401230812072754 [email protected]: 0.04325180500745773 [email protected]: 0.38238680362701416 [email protected]: 0.089534230530262 [email protected]: 0.07771343737840652 Inference_Time: 87661.1875
649
+
650
+ Epoch 0 (1/15) - LR/Param_group_0: 1e-06 LR/Param_group_1: 1e-06
651
+
652
+ Epoch 1 (2/15) - Train_PPYoloELoss/loss_cls: 1.166463851928711 Train_PPYoloELoss/loss_iou: 0.2636335790157318 Train_PPYoloELoss/loss_dfl: 1.3941149711608887 Train_PPYoloELoss/loss: 2.52260684967041 Valid_PPYoloELoss/loss_cls: 1.2233375310897827 Valid_PPYoloELoss/loss_iou: 0.2455494999885559 Valid_PPYoloELoss/loss_dfl: 1.3523083925247192 Valid_PPYoloELoss/loss: 2.513366222381592 [email protected]: 0.015027979388833046 [email protected]: 0.8996546268463135 [email protected]: 0.4798499345779419 [email protected]: 0.029562147334218025 Inference_Time: 87491.5
653
+
654
+ Epoch 1 (2/15) - LR/Param_group_0: 0.00016733333333333333 LR/Param_group_1: 0.00016733333333333333
655
+
656
+ Epoch 2 (3/15) - Train_PPYoloELoss/loss_cls: 1.141836404800415 Train_PPYoloELoss/loss_iou: 0.2573237717151642 Train_PPYoloELoss/loss_dfl: 1.3711341619491577 Train_PPYoloELoss/loss: 2.4707140922546387 Valid_PPYoloELoss/loss_cls: 1.1793231964111328 Valid_PPYoloELoss/loss_iou: 0.24998177587985992 Valid_PPYoloELoss/loss_dfl: 1.3842113018035889 Valid_PPYoloELoss/loss: 2.4963839054107666 [email protected]: 0.016405094414949417 [email protected]: 0.8856484889984131 [email protected]: 0.42721670866012573 [email protected]: 0.0322134904563427 Inference_Time: 87581.796875
657
+
658
+ Epoch 2 (3/15) - LR/Param_group_0: 0.0003336666666666667 LR/Param_group_1: 0.0003336666666666667
659
+
660
+ Epoch 3 (4/15) - Train_PPYoloELoss/loss_cls: 1.150810718536377 Train_PPYoloELoss/loss_iou: 0.2577815055847168 Train_PPYoloELoss/loss_dfl: 1.3847109079360962 Train_PPYoloELoss/loss: 2.4876186847686768 Valid_PPYoloELoss/loss_cls: 1.2417112588882446 Valid_PPYoloELoss/loss_iou: 0.2563279867172241 Valid_PPYoloELoss/loss_dfl: 1.4326244592666626 Valid_PPYoloELoss/loss: 2.598844289779663 [email protected]: 0.017797669395804405 [email protected]: 0.8499616384506226 [email protected]: 0.395309716463089 [email protected]: 0.034865282475948334 Inference_Time: 86932.6484375
661
+
662
+ Epoch 3 (4/15) - LR/Param_group_0: 0.0005 LR/Param_group_1: 0.0005
663
+
664
+ Epoch 4 (5/15) - Train_PPYoloELoss/loss_cls: 1.1298094987869263 Train_PPYoloELoss/loss_iou: 0.24788755178451538 Train_PPYoloELoss/loss_dfl: 1.3363499641418457 Train_PPYoloELoss/loss: 2.417703628540039 Valid_PPYoloELoss/loss_cls: 1.1644823551177979 Valid_PPYoloELoss/loss_iou: 0.24936263263225555 Valid_PPYoloELoss/loss_dfl: 1.397640585899353 Valid_PPYoloELoss/loss: 2.486708879470825 [email protected]: 0.02170523814857006 [email protected]: 0.8601304888725281 [email protected]: 0.45845457911491394 [email protected]: 0.04234198480844498 Inference_Time: 86974.015625
665
+
666
+ Epoch 4 (5/15) - LR/Param_group_0: 0.0004923767044943654 LR/Param_group_1: 0.0004923767044943654
667
+
668
+ Epoch 5 (6/15) - Train_PPYoloELoss/loss_cls: 1.1231328248977661 Train_PPYoloELoss/loss_iou: 0.2438051998615265 Train_PPYoloELoss/loss_dfl: 1.3182282447814941 Train_PPYoloELoss/loss: 2.391761064529419 Valid_PPYoloELoss/loss_cls: 1.2028536796569824 Valid_PPYoloELoss/loss_iou: 0.24437254667282104 Valid_PPYoloELoss/loss_dfl: 1.377091407775879 Valid_PPYoloELoss/loss: 2.502331495285034 [email protected]: 0.017273498699069023 [email protected]: 0.8823868036270142 [email protected]: 0.48124265670776367 [email protected]: 0.03388369455933571 Inference_Time: 86847.265625
669
+
670
+ Epoch 5 (6/15) - LR/Param_group_0: 0.0004699460572316118 LR/Param_group_1: 0.0004699460572316118
671
+
672
+ Epoch 6 (7/15) - Train_PPYoloELoss/loss_cls: 1.1125056743621826 Train_PPYoloELoss/loss_iou: 0.24215054512023926 Train_PPYoloELoss/loss_dfl: 1.3027186393737793 Train_PPYoloELoss/loss: 2.3692400455474854 Valid_PPYoloELoss/loss_cls: 1.1844314336776733 Valid_PPYoloELoss/loss_iou: 0.24283626675605774 Valid_PPYoloELoss/loss_dfl: 1.3685951232910156 Valid_PPYoloELoss/loss: 2.4758198261260986 [email protected]: 0.01980043388903141 [email protected]: 0.8760552406311035 [email protected]: 0.45704999566078186 [email protected]: 0.0387255996465683 Inference_Time: 87195.390625
673
+
674
+ Epoch 6 (7/15) - LR/Param_group_0: 0.00043423594998756126 LR/Param_group_1: 0.00043423594998756126
675
+
676
+ Epoch 7 (8/15) - Train_PPYoloELoss/loss_cls: 1.0954060554504395 Train_PPYoloELoss/loss_iou: 0.23842182755470276 Train_PPYoloELoss/loss_dfl: 1.2814346551895142 Train_PPYoloELoss/loss: 2.3321774005889893 Valid_PPYoloELoss/loss_cls: 1.1549570560455322 Valid_PPYoloELoss/loss_iou: 0.2391127049922943 Valid_PPYoloELoss/loss_dfl: 1.36127507686615 Valid_PPYoloELoss/loss: 2.4333763122558594 [email protected]: 0.028354886919260025 [email protected]: 0.8434382081031799 [email protected]: 0.4446112811565399 [email protected]: 0.05486530065536499 Inference_Time: 87062.125
677
+
678
+ Epoch 7 (8/15) - LR/Param_group_0: 0.00038767890664502167 LR/Param_group_1: 0.00038767890664502167
679
+
680
+ Epoch 8 (9/15) - Train_PPYoloELoss/loss_cls: 1.094423532485962 Train_PPYoloELoss/loss_iou: 0.23351271450519562 Train_PPYoloELoss/loss_dfl: 1.263392448425293 Train_PPYoloELoss/loss: 2.309904098510742 Valid_PPYoloELoss/loss_cls: 1.0994166135787964 Valid_PPYoloELoss/loss_iou: 0.23664221167564392 Valid_PPYoloELoss/loss_dfl: 1.3241026401519775 Valid_PPYoloELoss/loss: 2.3530733585357666 [email protected]: 0.02528832107782364 [email protected]: 0.8906369805335999 [email protected]: 0.5475698709487915 [email protected]: 0.04918023943901062 Inference_Time: 87160.265625
681
+
682
+ Epoch 8 (9/15) - LR/Param_group_0: 0.0003334463296047109 LR/Param_group_1: 0.0003334463296047109
683
+
684
+ Epoch 9 (10/15) - Train_PPYoloELoss/loss_cls: 1.073317527770996 Train_PPYoloELoss/loss_iou: 0.2302723228931427 Train_PPYoloELoss/loss_dfl: 1.2447388172149658 Train_PPYoloELoss/loss: 2.271367311477661 Valid_PPYoloELoss/loss_cls: 1.1121559143066406 Valid_PPYoloELoss/loss_iou: 0.24138985574245453 Valid_PPYoloELoss/loss_dfl: 1.3346160650253296 Valid_PPYoloELoss/loss: 2.3829386234283447 [email protected]: 0.021185651421546936 [email protected]: 0.8948580026626587 [email protected]: 0.5400114059448242 [email protected]: 0.041391368955373764 Inference_Time: 86761.65625
685
+
686
+ Epoch 9 (10/15) - LR/Param_group_0: 0.00027523246817188037 LR/Param_group_1: 0.00027523246817188037
687
+
688
+ Epoch 10 (11/15) - Train_PPYoloELoss/loss_cls: 1.0707461833953857 Train_PPYoloELoss/loss_iou: 0.22916893661022186 Train_PPYoloELoss/loss_dfl: 1.2395823001861572 Train_PPYoloELoss/loss: 2.263460159301758 Valid_PPYoloELoss/loss_cls: 1.0663731098175049 Valid_PPYoloELoss/loss_iou: 0.23505419492721558 Valid_PPYoloELoss/loss_dfl: 1.3015613555908203 Valid_PPYoloELoss/loss: 2.3047895431518555 [email protected]: 0.026322683319449425 [email protected]: 0.9061780571937561 [email protected]: 0.5947054624557495 [email protected]: 0.05115928873419762 Inference_Time: 87799.5
689
+
690
+ Epoch 10 (11/15) - LR/Param_group_0: 0.00021700277132370856 LR/Param_group_1: 0.00021700277132370856
691
+
692
+ Epoch 11 (12/15) - Train_PPYoloELoss/loss_cls: 1.0621824264526367 Train_PPYoloELoss/loss_iou: 0.22597089409828186 Train_PPYoloELoss/loss_dfl: 1.2170137166976929 Train_PPYoloELoss/loss: 2.2356162071228027 Valid_PPYoloELoss/loss_cls: 1.1015101671218872 Valid_PPYoloELoss/loss_iou: 0.2394164651632309 Valid_PPYoloELoss/loss_dfl: 1.3316105604171753 Valid_PPYoloELoss/loss: 2.3658559322357178 [email protected]: 0.024049220606684685 [email protected]: 0.9052187204360962 [email protected]: 0.5670465230941772 [email protected]: 0.04685366526246071 Inference_Time: 86475.0703125
693
+
694
+ Epoch 11 (12/15) - LR/Param_group_0: 0.00016272376672430553 LR/Param_group_1: 0.00016272376672430553
695
+
696
+ Epoch 12 (13/15) - Train_PPYoloELoss/loss_cls: 1.049034833908081 Train_PPYoloELoss/loss_iou: 0.22144024074077606 Train_PPYoloELoss/loss_dfl: 1.1981967687606812 Train_PPYoloELoss/loss: 2.2017338275909424 Valid_PPYoloELoss/loss_cls: 1.0634980201721191 Valid_PPYoloELoss/loss_iou: 0.2294604629278183 Valid_PPYoloELoss/loss_dfl: 1.2745609283447266 Valid_PPYoloELoss/loss: 2.274430513381958 [email protected]: 0.027548959478735924 [email protected]: 0.9130851626396179 [email protected]: 0.595493733882904 [email protected]: 0.0534842312335968 Inference_Time: 87099.296875
697
+
698
+ Epoch 12 (13/15) - LR/Param_group_0: 0.0001160928662610327 LR/Param_group_1: 0.0001160928662610327
699
+
700
+ Epoch 13 (14/15) - Train_PPYoloELoss/loss_cls: 1.0481233596801758 Train_PPYoloELoss/loss_iou: 0.22079135477542877 Train_PPYoloELoss/loss_dfl: 1.1923013925552368 Train_PPYoloELoss/loss: 2.1962530612945557 Valid_PPYoloELoss/loss_cls: 1.0877412557601929 Valid_PPYoloELoss/loss_iou: 0.22792711853981018 Valid_PPYoloELoss/loss_dfl: 1.2632607221603394 Valid_PPYoloELoss/loss: 2.289189338684082 [email protected]: 0.021859185770154 [email protected]: 0.9265157580375671 [email protected]: 0.6112275719642639 [email protected]: 0.04271070286631584 Inference_Time: 87536.5234375
701
+
702
+ Epoch 13 (14/15) - LR/Param_group_0: 8.028650338110862e-05 LR/Param_group_1: 8.028650338110862e-05
703
+
704
+ Epoch 14 (15/15) - Train_PPYoloELoss/loss_cls: 1.0317202806472778 Train_PPYoloELoss/loss_iou: 0.2186751812696457 Train_PPYoloELoss/loss_dfl: 1.1811234951019287 Train_PPYoloELoss/loss: 2.168968439102173 Valid_PPYoloELoss/loss_cls: 1.054010272026062 Valid_PPYoloELoss/loss_iou: 0.23441554605960846 Valid_PPYoloELoss/loss_dfl: 1.27616548538208 Valid_PPYoloELoss/loss: 2.2781312465667725 [email protected]: 0.026609761640429497 [email protected]: 0.9163469076156616 [email protected]: 0.6239312887191772 [email protected]: 0.051717691123485565 Inference_Time: 87271.7265625
705
+
706
+ Epoch 14 (15/15) - LR/Param_group_0: 5.774375877019629e-05 LR/Param_group_1: 5.774375877019629e-05
my_first_yolonas_run/logs_May13_17_05_43.txt ADDED
@@ -0,0 +1,136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [2023-05-13 16:54:01] INFO - super_gradients.common.crash_handler.crash_tips_setup - Crash tips is enabled. You can set your environment variable to CRASH_HANDLER=FALSE to disable it
2
+ [2023-05-13 16:54:06] DEBUG - pip._internal.vcs.versioncontrol - Registered VCS backend: bzr
3
+ [2023-05-13 16:54:06] DEBUG - pip._internal.vcs.versioncontrol - Registered VCS backend: git
4
+ [2023-05-13 16:54:06] DEBUG - pip._internal.vcs.versioncontrol - Registered VCS backend: hg
5
+ [2023-05-13 16:54:06] DEBUG - pip._internal.vcs.versioncontrol - Registered VCS backend: svn
6
+ [2023-05-13 16:54:06] DEBUG - super_gradients.common.sg_loggers.clearml_sg_logger - Failed to import clearml
7
+ [2023-05-13 16:54:06] DEBUG - super_gradients.modules - Failed to import pytorch_quantization: cannot import name 'Bottleneck' from partially initialized module 'super_gradients.training.models.classification_models.resnet' (most likely due to a circular import) (/usr/local/lib/python3.10/dist-packages/super_gradients/training/models/classification_models/resnet.py)
8
+ [2023-05-13 16:54:06] DEBUG - hydra.core.utils - Setting JobRuntime:name=UNKNOWN_NAME
9
+ [2023-05-13 16:54:06] DEBUG - hydra.core.utils - Setting JobRuntime:name=app
10
+ [2023-05-13 16:54:06] DEBUG - hydra.core.utils - Setting JobRuntime:name=app
11
+ [2023-05-13 16:54:07] DEBUG - hydra.core.utils - Setting JobRuntime:name=app
12
+ [2023-05-13 16:54:07] DEBUG - hydra.core.utils - Setting JobRuntime:name=app
13
+ [2023-05-13 16:54:07] DEBUG - hydra.core.utils - Setting JobRuntime:name=app
14
+ [2023-05-13 16:54:07] WARNING - super_gradients.training.utils.quantization - Failed to import pytorch_quantization
15
+ [2023-05-13 16:54:07] WARNING - super_gradients.training.utils.quantization.calibrator - Failed to import pytorch_quantization
16
+ [2023-05-13 16:54:07] WARNING - super_gradients.training.utils.quantization.export - Failed to import pytorch_quantization
17
+ [2023-05-13 16:54:07] WARNING - super_gradients.training.utils.quantization.selective_quantization_utils - Failed to import pytorch_quantization
18
+ [2023-05-13 16:54:07] DEBUG - super_gradients.training.qat_trainer.qat_trainer - Failed to import pytorch_quantization:
19
+ [2023-05-13 16:54:07] DEBUG - super_gradients.training.qat_trainer.qat_trainer - name 'QuantizedMetadata' is not defined
20
+ [2023-05-13 16:54:07] DEBUG - super_gradients.sanity_check.env_sanity_check - pyparsing==2.4.7 does not satisfy requirement pyparsing==2.4.5
21
+ [2023-05-13 16:54:33] DEBUG - urllib3.connectionpool - Starting new HTTPS connection (1): app.roboflow.com:443
22
+ [2023-05-13 16:54:34] DEBUG - urllib3.connectionpool - https://app.roboflow.com:443 "GET /query/cliAuthToken/36509e31-f8df-4c6c-9182-357addecb9cd HTTP/1.1" 200 145
23
+ [2023-05-13 16:54:34] DEBUG - urllib3.connectionpool - Starting new HTTPS connection (1): api.roboflow.com:443
24
+ [2023-05-13 16:54:34] DEBUG - urllib3.connectionpool - https://api.roboflow.com:443 "POST /?api_key=2NdQm1ivtFCAYiOLVTwn HTTP/1.1" 200 182
25
+ [2023-05-13 16:54:34] DEBUG - urllib3.connectionpool - Starting new HTTPS connection (1): api.roboflow.com:443
26
+ [2023-05-13 16:54:34] DEBUG - urllib3.connectionpool - https://api.roboflow.com:443 "POST /?api_key=2NdQm1ivtFCAYiOLVTwn HTTP/1.1" 200 182
27
+ [2023-05-13 16:54:34] DEBUG - urllib3.connectionpool - Starting new HTTPS connection (1): api.roboflow.com:443
28
+ [2023-05-13 16:54:35] DEBUG - urllib3.connectionpool - https://api.roboflow.com:443 "GET /smartathon?api_key=2NdQm1ivtFCAYiOLVTwn HTTP/1.1" 200 3338
29
+ [2023-05-13 16:54:35] DEBUG - urllib3.connectionpool - Starting new HTTPS connection (1): api.roboflow.com:443
30
+ [2023-05-13 16:54:35] DEBUG - urllib3.connectionpool - https://api.roboflow.com:443 "GET /smartathon/new-pothole-detection?api_key=2NdQm1ivtFCAYiOLVTwn HTTP/1.1" 200 7291
31
+ [2023-05-13 16:54:35] DEBUG - urllib3.connectionpool - Starting new HTTPS connection (1): api.roboflow.com:443
32
+ [2023-05-13 16:54:35] DEBUG - urllib3.connectionpool - https://api.roboflow.com:443 "GET /smartathon/new-pothole-detection?api_key=2NdQm1ivtFCAYiOLVTwn HTTP/1.1" 200 7291
33
+ [2023-05-13 16:54:35] DEBUG - urllib3.connectionpool - Starting new HTTPS connection (1): api.roboflow.com:443
34
+ [2023-05-13 16:54:36] DEBUG - urllib3.connectionpool - https://api.roboflow.com:443 "GET /smartathon/new-pothole-detection/2?nocache=true&api_key=2NdQm1ivtFCAYiOLVTwn HTTP/1.1" 200 4611
35
+ [2023-05-13 16:54:36] DEBUG - urllib3.connectionpool - Starting new HTTPS connection (1): api.roboflow.com:443
36
+ [2023-05-13 16:54:36] DEBUG - urllib3.connectionpool - https://api.roboflow.com:443 "GET /smartathon/new-pothole-detection/2/yolov5pytorch?api_key=2NdQm1ivtFCAYiOLVTwn HTTP/1.1" 200 3494
37
+ [2023-05-13 17:01:06] DEBUG - hydra.core.utils - Setting JobRuntime:name=app
38
+ [2023-05-13 17:01:08] WARNING - super_gradients.training.datasets.detection_datasets.detection_dataset - Found 1090 invalid bbox that were ignored. For more information, please set `show_all_warnings=True`.
39
+ [2023-05-13 17:01:08] DEBUG - hydra.core.utils - Setting JobRuntime:name=app
40
+ [2023-05-13 17:01:08] DEBUG - hydra.core.utils - Setting JobRuntime:name=app
41
+ [2023-05-13 17:01:09] WARNING - super_gradients.training.datasets.detection_datasets.detection_dataset - Found 4 invalid bbox that were ignored. For more information, please set `show_all_warnings=True`.
42
+ [2023-05-13 17:01:16] DEBUG - matplotlib.font_manager - findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0.
43
+ [2023-05-13 17:01:16] DEBUG - matplotlib.font_manager - findfont: score(FontEntry(fname='/usr/local/lib/python3.10/dist-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05
44
+ [2023-05-13 17:01:16] DEBUG - matplotlib.font_manager - findfont: score(FontEntry(fname='/usr/local/lib/python3.10/dist-packages/matplotlib/mpl-data/fonts/ttf/STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05
45
+ [2023-05-13 17:01:16] DEBUG - matplotlib.font_manager - findfont: score(FontEntry(fname='/usr/local/lib/python3.10/dist-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05
46
+ [2023-05-13 17:01:16] DEBUG - matplotlib.font_manager - findfont: score(FontEntry(fname='/usr/local/lib/python3.10/dist-packages/matplotlib/mpl-data/fonts/ttf/STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05
47
+ [2023-05-13 17:01:16] DEBUG - matplotlib.font_manager - findfont: score(FontEntry(fname='/usr/local/lib/python3.10/dist-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05
48
+ [2023-05-13 17:01:16] DEBUG - matplotlib.font_manager - findfont: score(FontEntry(fname='/usr/local/lib/python3.10/dist-packages/matplotlib/mpl-data/fonts/ttf/STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05
49
+ [2023-05-13 17:01:16] DEBUG - matplotlib.font_manager - findfont: score(FontEntry(fname='/usr/local/lib/python3.10/dist-packages/matplotlib/mpl-data/fonts/ttf/STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335
50
+ [2023-05-13 17:01:16] DEBUG - matplotlib.font_manager - findfont: score(FontEntry(fname='/usr/local/lib/python3.10/dist-packages/matplotlib/mpl-data/fonts/ttf/cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05
51
+ [2023-05-13 17:01:16] DEBUG - matplotlib.font_manager - findfont: score(FontEntry(fname='/usr/local/lib/python3.10/dist-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05
52
+ [2023-05-13 17:01:16] DEBUG - matplotlib.font_manager - findfont: score(FontEntry(fname='/usr/local/lib/python3.10/dist-packages/matplotlib/mpl-data/fonts/ttf/STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05
53
+ [2023-05-13 17:01:16] DEBUG - matplotlib.font_manager - findfont: score(FontEntry(fname='/usr/local/lib/python3.10/dist-packages/matplotlib/mpl-data/fonts/ttf/STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05
54
+ [2023-05-13 17:01:16] DEBUG - matplotlib.font_manager - findfont: score(FontEntry(fname='/usr/local/lib/python3.10/dist-packages/matplotlib/mpl-data/fonts/ttf/STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335
55
+ [2023-05-13 17:01:16] DEBUG - matplotlib.font_manager - findfont: score(FontEntry(fname='/usr/local/lib/python3.10/dist-packages/matplotlib/mpl-data/fonts/ttf/cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05
56
+ [2023-05-13 17:01:16] DEBUG - matplotlib.font_manager - findfont: score(FontEntry(fname='/usr/local/lib/python3.10/dist-packages/matplotlib/mpl-data/fonts/ttf/cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05
57
+ [2023-05-13 17:01:16] DEBUG - matplotlib.font_manager - findfont: score(FontEntry(fname='/usr/local/lib/python3.10/dist-packages/matplotlib/mpl-data/fonts/ttf/STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335
58
+ [2023-05-13 17:01:16] DEBUG - matplotlib.font_manager - findfont: score(FontEntry(fname='/usr/local/lib/python3.10/dist-packages/matplotlib/mpl-data/fonts/ttf/STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335
59
+ [2023-05-13 17:01:16] DEBUG - matplotlib.font_manager - findfont: score(FontEntry(fname='/usr/local/lib/python3.10/dist-packages/matplotlib/mpl-data/fonts/ttf/STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335
60
+ [2023-05-13 17:01:16] DEBUG - matplotlib.font_manager - findfont: score(FontEntry(fname='/usr/local/lib/python3.10/dist-packages/matplotlib/mpl-data/fonts/ttf/STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335
61
+ [2023-05-13 17:01:16] DEBUG - matplotlib.font_manager - findfont: score(FontEntry(fname='/usr/local/lib/python3.10/dist-packages/matplotlib/mpl-data/fonts/ttf/cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05
62
+ [2023-05-13 17:01:16] DEBUG - matplotlib.font_manager - findfont: score(FontEntry(fname='/usr/local/lib/python3.10/dist-packages/matplotlib/mpl-data/fonts/ttf/STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05
63
+ [2023-05-13 17:01:16] DEBUG - matplotlib.font_manager - findfont: score(FontEntry(fname='/usr/local/lib/python3.10/dist-packages/matplotlib/mpl-data/fonts/ttf/cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05
64
+ [2023-05-13 17:01:16] DEBUG - matplotlib.font_manager - findfont: score(FontEntry(fname='/usr/local/lib/python3.10/dist-packages/matplotlib/mpl-data/fonts/ttf/cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05
65
+ [2023-05-13 17:01:16] DEBUG - matplotlib.font_manager - findfont: score(FontEntry(fname='/usr/local/lib/python3.10/dist-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335
66
+ [2023-05-13 17:01:16] DEBUG - matplotlib.font_manager - findfont: score(FontEntry(fname='/usr/local/lib/python3.10/dist-packages/matplotlib/mpl-data/fonts/ttf/STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335
67
+ [2023-05-13 17:01:16] DEBUG - matplotlib.font_manager - findfont: score(FontEntry(fname='/usr/local/lib/python3.10/dist-packages/matplotlib/mpl-data/fonts/ttf/STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335
68
+ [2023-05-13 17:01:16] DEBUG - matplotlib.font_manager - findfont: score(FontEntry(fname='/usr/local/lib/python3.10/dist-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05
69
+ [2023-05-13 17:01:16] DEBUG - matplotlib.font_manager - findfont: score(FontEntry(fname='/usr/local/lib/python3.10/dist-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05
70
+ [2023-05-13 17:01:16] DEBUG - matplotlib.font_manager - findfont: score(FontEntry(fname='/usr/local/lib/python3.10/dist-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335
71
+ [2023-05-13 17:01:16] DEBUG - matplotlib.font_manager - findfont: score(FontEntry(fname='/usr/local/lib/python3.10/dist-packages/matplotlib/mpl-data/fonts/ttf/STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05
72
+ [2023-05-13 17:01:16] DEBUG - matplotlib.font_manager - findfont: score(FontEntry(fname='/usr/local/lib/python3.10/dist-packages/matplotlib/mpl-data/fonts/ttf/cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05
73
+ [2023-05-13 17:01:16] DEBUG - matplotlib.font_manager - findfont: score(FontEntry(fname='/usr/local/lib/python3.10/dist-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05
74
+ [2023-05-13 17:01:16] DEBUG - matplotlib.font_manager - findfont: score(FontEntry(fname='/usr/local/lib/python3.10/dist-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05
75
+ [2023-05-13 17:01:16] DEBUG - matplotlib.font_manager - findfont: score(FontEntry(fname='/usr/local/lib/python3.10/dist-packages/matplotlib/mpl-data/fonts/ttf/STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05
76
+ [2023-05-13 17:01:16] DEBUG - matplotlib.font_manager - findfont: score(FontEntry(fname='/usr/local/lib/python3.10/dist-packages/matplotlib/mpl-data/fonts/ttf/STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05
77
+ [2023-05-13 17:01:16] DEBUG - matplotlib.font_manager - findfont: score(FontEntry(fname='/usr/local/lib/python3.10/dist-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335
78
+ [2023-05-13 17:01:16] DEBUG - matplotlib.font_manager - findfont: score(FontEntry(fname='/usr/local/lib/python3.10/dist-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335
79
+ [2023-05-13 17:01:16] DEBUG - matplotlib.font_manager - findfont: score(FontEntry(fname='/usr/local/lib/python3.10/dist-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335
80
+ [2023-05-13 17:01:16] DEBUG - matplotlib.font_manager - findfont: score(FontEntry(fname='/usr/local/lib/python3.10/dist-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996
81
+ [2023-05-13 17:01:16] DEBUG - matplotlib.font_manager - findfont: score(FontEntry(fname='/usr/share/fonts/truetype/liberation/LiberationSansNarrow-Regular.ttf', name='Liberation Sans Narrow', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25
82
+ [2023-05-13 17:01:16] DEBUG - matplotlib.font_manager - findfont: score(FontEntry(fname='/usr/share/fonts/truetype/liberation/LiberationMono-Italic.ttf', name='Liberation Mono', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05
83
+ [2023-05-13 17:01:16] DEBUG - matplotlib.font_manager - findfont: score(FontEntry(fname='/usr/share/fonts/truetype/liberation/LiberationSansNarrow-BoldItalic.ttf', name='Liberation Sans Narrow', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535
84
+ [2023-05-13 17:01:16] DEBUG - matplotlib.font_manager - findfont: score(FontEntry(fname='/usr/share/fonts/truetype/liberation/LiberationSansNarrow-Bold.ttf', name='Liberation Sans Narrow', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535
85
+ [2023-05-13 17:01:16] DEBUG - matplotlib.font_manager - findfont: score(FontEntry(fname='/usr/share/fonts/truetype/liberation/LiberationMono-Bold.ttf', name='Liberation Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335
86
+ [2023-05-13 17:01:16] DEBUG - matplotlib.font_manager - findfont: score(FontEntry(fname='/usr/share/fonts/truetype/liberation/LiberationSans-Italic.ttf', name='Liberation Sans', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05
87
+ [2023-05-13 17:01:16] DEBUG - matplotlib.font_manager - findfont: score(FontEntry(fname='/usr/share/fonts/truetype/liberation/LiberationSerif-Italic.ttf', name='Liberation Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05
88
+ [2023-05-13 17:01:16] DEBUG - matplotlib.font_manager - findfont: score(FontEntry(fname='/usr/share/fonts/truetype/liberation/LiberationMono-BoldItalic.ttf', name='Liberation Mono', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335
89
+ [2023-05-13 17:01:16] DEBUG - matplotlib.font_manager - findfont: score(FontEntry(fname='/usr/share/fonts/truetype/liberation/LiberationSans-Regular.ttf', name='Liberation Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05
90
+ [2023-05-13 17:01:16] DEBUG - matplotlib.font_manager - findfont: score(FontEntry(fname='/usr/share/fonts/truetype/liberation/LiberationSansNarrow-Italic.ttf', name='Liberation Sans Narrow', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25
91
+ [2023-05-13 17:01:16] DEBUG - matplotlib.font_manager - findfont: score(FontEntry(fname='/usr/share/fonts/truetype/liberation/LiberationSerif-BoldItalic.ttf', name='Liberation Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335
92
+ [2023-05-13 17:01:16] DEBUG - matplotlib.font_manager - findfont: score(FontEntry(fname='/usr/share/fonts/truetype/liberation/LiberationSerif-Bold.ttf', name='Liberation Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335
93
+ [2023-05-13 17:01:16] DEBUG - matplotlib.font_manager - findfont: score(FontEntry(fname='/usr/share/fonts/truetype/liberation/LiberationSans-BoldItalic.ttf', name='Liberation Sans', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335
94
+ [2023-05-13 17:01:16] DEBUG - matplotlib.font_manager - findfont: score(FontEntry(fname='/usr/share/fonts/truetype/liberation/LiberationMono-Regular.ttf', name='Liberation Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05
95
+ [2023-05-13 17:01:16] DEBUG - matplotlib.font_manager - findfont: score(FontEntry(fname='/usr/share/fonts/truetype/liberation/LiberationSerif-Regular.ttf', name='Liberation Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05
96
+ [2023-05-13 17:01:16] DEBUG - matplotlib.font_manager - findfont: score(FontEntry(fname='/usr/share/fonts/truetype/humor-sans/Humor-Sans.ttf', name='Humor Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05
97
+ [2023-05-13 17:01:16] DEBUG - matplotlib.font_manager - findfont: score(FontEntry(fname='/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf', name='Liberation Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335
98
+ [2023-05-13 17:01:16] DEBUG - matplotlib.font_manager - findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('/usr/local/lib/python3.10/dist-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf') with score of 0.050000.
99
+ [2023-05-13 17:03:47] DEBUG - hydra.core.utils - Setting JobRuntime:name=app
100
+ [2023-05-13 17:03:48] WARNING - super_gradients.training.datasets.detection_datasets.detection_dataset - Found 1090 invalid bbox that were ignored. For more information, please set `show_all_warnings=True`.
101
+ [2023-05-13 17:03:48] DEBUG - hydra.core.utils - Setting JobRuntime:name=app
102
+ [2023-05-13 17:03:49] DEBUG - hydra.core.utils - Setting JobRuntime:name=app
103
+ [2023-05-13 17:03:49] WARNING - super_gradients.training.datasets.detection_datasets.detection_dataset - Found 4 invalid bbox that were ignored. For more information, please set `show_all_warnings=True`.
104
+ [2023-05-13 17:04:34] DEBUG - hydra.core.utils - Setting JobRuntime:name=app
105
+ [2023-05-13 17:04:36] INFO - super_gradients.training.utils.checkpoint_utils - License Notification: YOLO-NAS pre-trained weights are subjected to the specific license terms and conditions detailed in
106
+ https://github.com/Deci-AI/super-gradients/blob/master/LICENSE.YOLONAS.md
107
+ By downloading the pre-trained weight files you agree to comply with these terms.
108
+ [2023-05-13 17:05:36] INFO - super_gradients.training.sg_trainer.sg_trainer - Using EMA with params {'decay': 0.9, 'decay_type': 'threshold'}
109
+ [2023-05-13 17:05:40] DEBUG - tensorflow - Falling back to TensorFlow client; we recommended you install the Cloud TPU client directly with pip install cloud-tpu-client.
110
+ [2023-05-13 17:05:40] DEBUG - h5py._conv - Creating converter from 7 to 5
111
+ [2023-05-13 17:05:40] DEBUG - h5py._conv - Creating converter from 5 to 7
112
+ [2023-05-13 17:05:40] DEBUG - h5py._conv - Creating converter from 7 to 5
113
+ [2023-05-13 17:05:40] DEBUG - h5py._conv - Creating converter from 5 to 7
114
+ [2023-05-13 17:05:41] DEBUG - jaxlib.mlir._mlir_libs - Initializing MLIR with module: _site_initialize_0
115
+ [2023-05-13 17:05:41] DEBUG - jaxlib.mlir._mlir_libs - Registering dialects from initializer <module 'jaxlib.mlir._mlir_libs._site_initialize_0' from '/usr/local/lib/python3.10/dist-packages/jaxlib/mlir/_mlir_libs/_site_initialize_0.so'>
116
+ [2023-05-13 17:05:41] DEBUG - jax._src.path - etils.epath found. Using etils.epath for file I/O.
117
+ [2023-05-13 17:05:42] INFO - numexpr.utils - NumExpr defaulting to 2 threads.
118
+ [2023-05-13 17:05:49] INFO - super_gradients.training.utils.sg_trainer_utils - TRAINING PARAMETERS:
119
+ - Mode: Single GPU
120
+ - Number of GPUs: 1 (1 available on the machine)
121
+ - Dataset size: 6086 (len(train_set))
122
+ - Batch size per GPU: 16 (batch_size)
123
+ - Batch Accumulate: 1 (batch_accumulate)
124
+ - Total batch size: 16 (num_gpus * batch_size)
125
+ - Effective Batch size: 16 (num_gpus * batch_size * batch_accumulate)
126
+ - Iterations per epoch: 380 (len(train_loader))
127
+ - Gradient updates per epoch: 380 (len(train_loader) / batch_accumulate)
128
+
129
+ [2023-05-13 17:13:26] INFO - super_gradients.training.sg_trainer.sg_trainer -
130
+ [MODEL TRAINING EXECUTION HAS BEEN INTERRUPTED]... Please wait until SOFT-TERMINATION process finishes and saves all of the Model Checkpoints and log files before terminating...
131
+ [2023-05-13 17:13:26] INFO - super_gradients.training.sg_trainer.sg_trainer - For HARD Termination - Stop the process again
132
+ [2023-05-13 17:13:26] INFO - super_gradients.common.sg_loggers.base_sg_logger - [CLEANUP] - Successfully stopped system monitoring process
133
+ [2023-05-13 17:13:27] DEBUG - hydra.core.utils - Setting JobRuntime:name=app
134
+ [2023-05-13 17:13:57] INFO - super_gradients.training.sg_trainer.sg_trainer - Using EMA with params {'decay': 0.9, 'decay_type': 'threshold'}
135
+ [2023-05-13 17:13:58] DEBUG - super_gradients.training.utils.sg_trainer_utils - "events.out.tfevents.1683998007.cf6772931124.3382.1" will not be deleted
136
+ [2023-05-13 17:13:58] DEBUG - super_gradients.training.utils.sg_trainer_utils - "events.out.tfevents.1683997543.cf6772931124.3382.0" will not be deleted
my_first_yolonas_run/logs_May13_17_13_58.txt ADDED
The diff for this file is too large to render. See raw diff