--- library_name: transformers language: - aeb license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - AT metrics: - wer model-index: - name: Whisper medium AT results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: AT type: AT args: 'config: aeb, split: test' metrics: - name: Wer type: wer value: 65.98418372874012 --- # Whisper medium AT This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the AT dataset. It achieves the following results on the evaluation set: - Loss: 0.9915 - Wer: 65.9842 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | No log | 1.0 | 293 | 1.3198 | 74.6073 | | 1.7949 | 2.0 | 586 | 1.0108 | 70.6316 | | 1.7949 | 3.0 | 879 | 0.9583 | 65.9517 | | 0.5076 | 4.0 | 1172 | 0.9915 | 65.9842 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0