Create generation_fast.py
Browse files- generation_fast.py +29 -0
generation_fast.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
+
|
5 |
+
class CodeGenerator:
|
6 |
+
def __init__(self, model_name):
|
7 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
self.model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
9 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
10 |
+
self.model.to(self.device)
|
11 |
+
|
12 |
+
def generate_code(self, nl_input, max_length=256, num_beams=4, early_stopping=True):
|
13 |
+
inputs = self.tokenizer(nl_input, return_tensors="pt").to(self.device)
|
14 |
+
outputs = self.model.generate(
|
15 |
+
**inputs,
|
16 |
+
max_length=max_length,
|
17 |
+
num_beams=num_beams,
|
18 |
+
early_stopping=early_stopping,
|
19 |
+
)
|
20 |
+
generated_code = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
21 |
+
return generated_code
|
22 |
+
|
23 |
+
if __name__ == "__main__":
|
24 |
+
model_name = "S-Dreamer/PyCodeT5"
|
25 |
+
generator = CodeGenerator(model_name)
|
26 |
+
|
27 |
+
nl_input = "Write a Python function to calculate the factorial of a number."
|
28 |
+
generated_code = generator.generate_code(nl_input)
|
29 |
+
print(generated_code)
|