Update generation_fast.py
Browse files- generation_fast.py +42 -23
generation_fast.py
CHANGED
@@ -1,30 +1,49 @@
|
|
1 |
-
# generation_fast.py
|
2 |
import torch
|
3 |
-
from transformers import
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
10 |
-
self.model.to(self.device)
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
max_length=max_length,
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
length_penalty=1.0, # Adjust length penalty
|
21 |
-
temperature=1.0, # Adjust temperature for diversity
|
22 |
)
|
23 |
-
|
24 |
-
|
25 |
|
|
|
26 |
if __name__ == "__main__":
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
print(generated_code)
|
|
|
|
|
1 |
import torch
|
2 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
3 |
|
4 |
+
# Load model and tokenizer
|
5 |
+
model_name = "your_model_repo"
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
|
|
|
|
8 |
|
9 |
+
# Ensure special tokens and preprocessing settings are applied
|
10 |
+
if tokenizer.special_tokens_map is None:
|
11 |
+
tokenizer.special_tokens_map = {
|
12 |
+
"bos_token": "<s>",
|
13 |
+
"eos_token": "</s>",
|
14 |
+
"unk_token": "<unk>",
|
15 |
+
"sep_token": "</s>",
|
16 |
+
"pad_token": "<pad>",
|
17 |
+
"cls_token": "<s>",
|
18 |
+
"mask_token": "<mask>"
|
19 |
+
}
|
20 |
+
tokenizer.save_pretrained(model_name)
|
21 |
+
|
22 |
+
preprocessor_config = {
|
23 |
+
"do_lower_case": False,
|
24 |
+
"max_length": 128,
|
25 |
+
"truncation": True,
|
26 |
+
"padding": "max_length"
|
27 |
+
}
|
28 |
+
|
29 |
+
# Define a function for text generation
|
30 |
+
def generate_code(prompt, max_length=128, temperature=0.7, top_p=0.9):
|
31 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, padding=True, max_length=preprocessor_config["max_length"])
|
32 |
+
|
33 |
+
with torch.no_grad():
|
34 |
+
outputs = model.generate(
|
35 |
+
input_ids=inputs["input_ids"],
|
36 |
+
attention_mask=inputs["attention_mask"],
|
37 |
max_length=max_length,
|
38 |
+
temperature=temperature,
|
39 |
+
top_p=top_p,
|
40 |
+
do_sample=True
|
|
|
|
|
41 |
)
|
42 |
+
|
43 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
44 |
|
45 |
+
# Example usage
|
46 |
if __name__ == "__main__":
|
47 |
+
prompt = "def quicksort(arr):"
|
48 |
+
generated_code = generate_code(prompt)
|
49 |
+
print("Generated Code:\n", generated_code)
|
|