S-Fry commited on
Commit
41061e4
1 Parent(s): 4c889c6

Create handler.py

Browse files
Files changed (1) hide show
  1. handler.py +41 -0
handler.py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Dict
2
+ from transformers.pipelines.audio_utils import ffmpeg_read, WhisperProcessor, WhisperForConditionalGeneration
3
+ from datasets import load_dataset
4
+
5
+ import torch
6
+
7
+ SAMPLE_RATE = 16000
8
+
9
+ class EndpointHandler():
10
+ def __init__(self, path=""):
11
+ # load the model
12
+ #self.model = whisper.load_model("medium")
13
+ self.processor = WhisperProcessor.from_pretrained("openai/whisper-large-v2")
14
+ self.model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large-v2")
15
+ self.forced_decoder_ids = processor.get_decoder_prompt_ids(language="french", task="transcribe")
16
+
17
+
18
+ def __call__(self, data: Dict[str, bytes]) -> Dict[str, str]:
19
+ """
20
+ Args:
21
+ data (:obj:):
22
+ includes the deserialized audio file as bytes
23
+ Return:
24
+ A :obj:`dict`:. base64 encoded image
25
+ """
26
+ # process input
27
+ inputs = data.pop("inputs", data)
28
+ audio_nparray = ffmpeg_read(inputs, SAMPLE_RATE)
29
+ audio_tensor= torch.from_numpy(audio_nparray)
30
+
31
+ #ds = load_dataset("common_voice", "fr", split="test", streaming=True)
32
+ #ds = ds.cast_column("audio", Audio(sampling_rate=16_000))
33
+ #input_speech = next(iter(ds))["audio"]
34
+ #input_features = processor(input_speech["array"], sampling_rate=input_speech["sampling_rate"], return_tensors="pt").input_features
35
+
36
+
37
+ # run inference pipeline
38
+ result = self.model.transcribe(audio_nparray)
39
+
40
+ # postprocess the prediction
41
+ return {"text": result["text"]}