Update handler.py
Browse files- handler.py +23 -28
handler.py
CHANGED
@@ -1,35 +1,30 @@
|
|
|
|
1 |
from typing import Dict
|
2 |
-
from transformers import
|
3 |
-
from
|
4 |
-
#import Torch
|
5 |
-
#from datasets import load_dataset
|
6 |
-
|
7 |
-
|
8 |
-
SAMPLE_RATE = 16000
|
9 |
|
|
|
10 |
class EndpointHandler():
|
11 |
def __init__(self, path=""):
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
18 |
def __call__(self, data: Dict[str, bytes]) -> Dict[str, str]:
|
19 |
-
"""
|
20 |
-
|
21 |
-
data (:obj:):
|
22 |
-
includes the deserialized audio file as bytes
|
23 |
-
Return:
|
24 |
-
A :obj:`dict`:. base64 encoded image
|
25 |
-
"""
|
26 |
-
# process input
|
27 |
inputs = data.pop("inputs", data)
|
28 |
audio_nparray = ffmpeg_read(inputs, sample_rate=SAMPLE_RATE)
|
29 |
-
audio_tensor= torch.from_numpy(audio_nparray)
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
#
|
35 |
-
|
|
|
|
|
|
1 |
+
import torch
|
2 |
from typing import Dict
|
3 |
+
from transformers import pipeline
|
4 |
+
from datasets import load_dataset
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
SAMPLE_RATE=16000
|
7 |
class EndpointHandler():
|
8 |
def __init__(self, path=""):
|
9 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
10 |
+
pipe = pipeline(
|
11 |
+
"automatic-speech-recognition",
|
12 |
+
model="openai/whisper-large",
|
13 |
+
chunk_length_s=30,
|
14 |
+
device=device,
|
15 |
+
)
|
16 |
+
|
17 |
def __call__(self, data: Dict[str, bytes]) -> Dict[str, str]:
|
18 |
+
#ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
19 |
+
#sample = ds[0]["audio"]
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
inputs = data.pop("inputs", data)
|
21 |
audio_nparray = ffmpeg_read(inputs, sample_rate=SAMPLE_RATE)
|
22 |
+
audio_tensor = torch.from_numpy(audio_nparray)
|
23 |
+
|
24 |
+
prediction = pipe(audio_nparray, return_timestamps=True)
|
25 |
+
return {"text": prediction[0]["transcription"]}
|
26 |
+
|
27 |
+
# we can also return timestamps for the predictions
|
28 |
+
#prediction = pipe(sample, return_timestamps=True)["chunks"]
|
29 |
+
#[{'text': ' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.',
|
30 |
+
# 'timestamp': (0.0, 5.44)}]
|