Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +95 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -1.52 +/- 0.46
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:add25813baf9b2a88d703f1cdd7d35eb807623a04577191eff2404d86c4ff396
|
3 |
+
size 108073
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7db7832c4790>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7db7832c84c0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1690220124525456275,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"lr_schedule": {
|
31 |
+
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
33 |
+
},
|
34 |
+
"_last_obs": {
|
35 |
+
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAi+/YPrA2iruNQBw/i+/YPrA2iruNQBw/i+/YPrA2iruNQBw/i+/YPrA2iruNQBw/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAADdynP15imD9n8qm/6aDJv0fx3j+FOfG+Q8c9v9zUVz/iDpY/CwKUPngPjT8lsMO/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACL79g+sDaKu41AHD/Qg9g7lTiCut89VTyL79g+sDaKu41AHD/Qg9g7lTiCut89VTyL79g+sDaKu41AHD/Qg9g7lTiCut89VTyL79g+sDaKu41AHD/Qg9g7lTiCut89VTyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[ 0.42370257 -0.00421795 0.61035997]\n [ 0.42370257 -0.00421795 0.61035997]\n [ 0.42370257 -0.00421795 0.61035997]\n [ 0.42370257 -0.00421795 0.61035997]]",
|
38 |
+
"desired_goal": "[[ 1.3114029 1.1905019 -1.32771 ]\n [-1.5752231 1.7417382 -0.47114196]\n [-0.74132174 0.8430917 1.1723292 ]\n [ 0.2890781 1.1020346 -1.528813 ]]",
|
39 |
+
"observation": "[[ 0.42370257 -0.00421795 0.61035997 0.00660751 -0.00099351 0.01301524]\n [ 0.42370257 -0.00421795 0.61035997 0.00660751 -0.00099351 0.01301524]\n [ 0.42370257 -0.00421795 0.61035997 0.00660751 -0.00099351 0.01301524]\n [ 0.42370257 -0.00421795 0.61035997 0.00660751 -0.00099351 0.01301524]]"
|
40 |
+
},
|
41 |
+
"_last_episode_starts": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_last_original_obs": {
|
46 |
+
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA+RMOPcQ+9L0siSY8ZGNNPd8fNzxyHJc+VWwuPRtj6b2vAHc+MZzhPam+Cr6sHaQ9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[ 0.03468702 -0.11926034 0.01016454]\n [ 0.05014361 0.01117703 0.2951389 ]\n [ 0.04258378 -0.11395856 0.24121355]\n [ 0.11016119 -0.13549294 0.08013472]]",
|
50 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
+
},
|
52 |
+
"_episode_num": 0,
|
53 |
+
"use_sde": false,
|
54 |
+
"sde_sample_freq": -1,
|
55 |
+
"_current_progress_remaining": 0.0,
|
56 |
+
"_stats_window_size": 100,
|
57 |
+
"ep_info_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIrB+b5EdcAcCUhpRSlIwBbJRLMowBdJRHQKfhSFkhA4Z1fZQoaAZoCWgPQwhEboYb8Pnwv5SGlFKUaBVLMmgWR0Cn4QjZlFtsdX2UKGgGaAloD0MI/dtlv+40/7+UhpRSlGgVSzJoFkdAp+CeogmqpHV9lChoBmgJaA9DCDY7Un3nl/q/lIaUUpRoFUsyaBZHQKfgQL/jsD51fZQoaAZoCWgPQwg8aHbdW9Hzv5SGlFKUaBVLMmgWR0Cn4n1nVXmvdX2UKGgGaAloD0MI3SQGgZWD+7+UhpRSlGgVSzJoFkdAp+I98PWhAXV9lChoBmgJaA9DCLmLMEW59Py/lIaUUpRoFUsyaBZHQKfh00ojOcF1fZQoaAZoCWgPQwjFVPoJZ7f9v5SGlFKUaBVLMmgWR0Cn4XVfeDWcdX2UKGgGaAloD0MIcEG2LF+X/b+UhpRSlGgVSzJoFkdAp+O6XjU/fXV9lChoBmgJaA9DCP5HpkOnZ/6/lIaUUpRoFUsyaBZHQKfjesvqTr51fZQoaAZoCWgPQwjgTEwXYvX8v5SGlFKUaBVLMmgWR0Cn4xAtnPE9dX2UKGgGaAloD0MIOXtntFVJ/r+UhpRSlGgVSzJoFkdAp+KyFqSHM3V9lChoBmgJaA9DCI5aYfpeQ/2/lIaUUpRoFUsyaBZHQKfk8MG5c1R1fZQoaAZoCWgPQwh0sz9QbtsDwJSGlFKUaBVLMmgWR0Cn5LFKCg9NdX2UKGgGaAloD0MIowbTMHzkAcCUhpRSlGgVSzJoFkdAp+RGmP5pJ3V9lChoBmgJaA9DCNkkP+JXbPq/lIaUUpRoFUsyaBZHQKfj6L4vexh1fZQoaAZoCWgPQwj4F0FjJpHwv5SGlFKUaBVLMmgWR0Cn5iXiJfpmdX2UKGgGaAloD0MIO1PovMauAMCUhpRSlGgVSzJoFkdAp+XmY0EX+HV9lChoBmgJaA9DCEFn0qbqXv+/lIaUUpRoFUsyaBZHQKfle9YfW+Z1fZQoaAZoCWgPQwjm6scm+VH6v5SGlFKUaBVLMmgWR0Cn5R3mFJxvdX2UKGgGaAloD0MIWU3XE13X8L+UhpRSlGgVSzJoFkdAp+diRGMGYHV9lChoBmgJaA9DCCTQYFPnEfm/lIaUUpRoFUsyaBZHQKfnIrbQC0Z1fZQoaAZoCWgPQwhPrimQ2dnyv5SGlFKUaBVLMmgWR0Cn5rgfEGaAdX2UKGgGaAloD0MIERyXcVMD/b+UhpRSlGgVSzJoFkdAp+ZaFVT723V9lChoBmgJaA9DCHLdlPJaCeu/lIaUUpRoFUsyaBZHQKfonJ1aGHp1fZQoaAZoCWgPQwiI2jaMguDuv5SGlFKUaBVLMmgWR0Cn6F0i6g/UdX2UKGgGaAloD0MIBtZx/FAp/7+UhpRSlGgVSzJoFkdAp+fyoAGSp3V9lChoBmgJaA9DCL71Yb1Ra/a/lIaUUpRoFUsyaBZHQKfnlPuXu3N1fZQoaAZoCWgPQwgfuwuUFNjlv5SGlFKUaBVLMmgWR0Cn6dTPSlWPdX2UKGgGaAloD0MIqFfKMsQx6L+UhpRSlGgVSzJoFkdAp+mVTR6WxHV9lChoBmgJaA9DCMSxLm6jAeG/lIaUUpRoFUsyaBZHQKfpKpYLb6B1fZQoaAZoCWgPQwhl4lZBDPTnv5SGlFKUaBVLMmgWR0Cn6MynUDuCdX2UKGgGaAloD0MIQ6m9iLaj97+UhpRSlGgVSzJoFkdAp+sH+sHSnnV9lChoBmgJaA9DCNx/ZDp0+u+/lIaUUpRoFUsyaBZHQKfqyGVzIWB1fZQoaAZoCWgPQwhaRX9o5gkAwJSGlFKUaBVLMmgWR0Cn6l2SlnAZdX2UKGgGaAloD0MIvw0xXvOq37+UhpRSlGgVSzJoFkdAp+n/vx6OYXV9lChoBmgJaA9DCFRW0/VE1/m/lIaUUpRoFUsyaBZHQKfsQSteUpx1fZQoaAZoCWgPQwgWURN9Por9v5SGlFKUaBVLMmgWR0Cn7AGVZ9uxdX2UKGgGaAloD0MIWI6QgTw747+UhpRSlGgVSzJoFkdAp+uW6GxlhHV9lChoBmgJaA9DCDZc5J6ubva/lIaUUpRoFUsyaBZHQKfrOQJ5VwR1fZQoaAZoCWgPQwh1yThGssf3v5SGlFKUaBVLMmgWR0Cn7hV5B1LbdX2UKGgGaAloD0MI3UHsTKEz/L+UhpRSlGgVSzJoFkdAp+3W3hGYr3V9lChoBmgJaA9DCEZ55uWwu/q/lIaUUpRoFUsyaBZHQKftbN0NjLB1fZQoaAZoCWgPQwh7Lei9MQT1v5SGlFKUaBVLMmgWR0Cn7Q/LDAJtdX2UKGgGaAloD0MIho2yfjPx/b+UhpRSlGgVSzJoFkdAp/AGIGhVVHV9lChoBmgJaA9DCA0a+ie4GPa/lIaUUpRoFUsyaBZHQKfvx336AOJ1fZQoaAZoCWgPQwggJXZtb7f2v5SGlFKUaBVLMmgWR0Cn712XkYGddX2UKGgGaAloD0MIL9/6sN7o/L+UhpRSlGgVSzJoFkdAp+8Ac5sCT3V9lChoBmgJaA9DCPGD86ljFfW/lIaUUpRoFUsyaBZHQKfyCS2Yv391fZQoaAZoCWgPQwi6LZELziD3v5SGlFKUaBVLMmgWR0Cn8cpuEVWTdX2UKGgGaAloD0MILxhcc0d/57+UhpRSlGgVSzJoFkdAp/Fgx8D0UXV9lChoBmgJaA9DCPFIvDyd6/e/lIaUUpRoFUsyaBZHQKfxA8XenAJ1fZQoaAZoCWgPQwjqP2t+/MUBwJSGlFKUaBVLMmgWR0Cn9Ftf5ULldX2UKGgGaAloD0MI/HJmu0Jf9L+UhpRSlGgVSzJoFkdAp/QeryUcGXV9lChoBmgJaA9DCGUZ4lgXd/2/lIaUUpRoFUsyaBZHQKfztPE87p51fZQoaAZoCWgPQwhDy7p/LETmv5SGlFKUaBVLMmgWR0Cn81nyd4FBdX2UKGgGaAloD0MI5Xyx9+JL+r+UhpRSlGgVSzJoFkdAp/Zw66reZXV9lChoBmgJaA9DCGe2K/TB8vG/lIaUUpRoFUsyaBZHQKf2MlO45Lh1fZQoaAZoCWgPQwhUxOkkW13pv5SGlFKUaBVLMmgWR0Cn9cikwevIdX2UKGgGaAloD0MI+aOoM/fwAcCUhpRSlGgVSzJoFkdAp/VrkuHvdHV9lChoBmgJaA9DCAg+BitOtey/lIaUUpRoFUsyaBZHQKf4bvKlpGp1fZQoaAZoCWgPQwglXTP5Zpvrv5SGlFKUaBVLMmgWR0Cn+DAYgq3FdX2UKGgGaAloD0MIsoS1MXbC7L+UhpRSlGgVSzJoFkdAp/fGQp4KQnV9lChoBmgJaA9DCMssQrEVNPO/lIaUUpRoFUsyaBZHQKf3aOearm11fZQoaAZoCWgPQwg7URISaZv6v5SGlFKUaBVLMmgWR0Cn+oA/LTx5dX2UKGgGaAloD0MIqTP3kPB9/7+UhpRSlGgVSzJoFkdAp/pC6BiCrnV9lChoBmgJaA9DCBMQk3Ahj/y/lIaUUpRoFUsyaBZHQKf52Ti83/B1fZQoaAZoCWgPQwiBeF2/YDf+v5SGlFKUaBVLMmgWR0Cn+XzTWoWIdX2UKGgGaAloD0MIWoEhq1s947+UhpRSlGgVSzJoFkdAp/wYe5nUUnV9lChoBmgJaA9DCK4oJQSr6vS/lIaUUpRoFUsyaBZHQKf72O09hZ11fZQoaAZoCWgPQwhRo5BkVu/vv5SGlFKUaBVLMmgWR0Cn+25K3/gjdX2UKGgGaAloD0MI/kXQmEkU+b+UhpRSlGgVSzJoFkdAp/sQWBSUDHV9lChoBmgJaA9DCBcoKbAAJvu/lIaUUpRoFUsyaBZHQKf9XlT3qRl1fZQoaAZoCWgPQwjCwkmaP6bpv5SGlFKUaBVLMmgWR0Cn/R7aqS5idX2UKGgGaAloD0MIYW2MnfCS+L+UhpRSlGgVSzJoFkdAp/y0sUZeiXV9lChoBmgJaA9DCGaDTDJylvO/lIaUUpRoFUsyaBZHQKf8Vs+mm+F1fZQoaAZoCWgPQwi2hHzQs9nqv5SGlFKUaBVLMmgWR0Cn/piYkVvddX2UKGgGaAloD0MIguLHmLuW4b+UhpRSlGgVSzJoFkdAp/5ZBVuJlHV9lChoBmgJaA9DCL00RYDTe/C/lIaUUpRoFUsyaBZHQKf97nlnyup1fZQoaAZoCWgPQwgaFqOutbf+v5SGlFKUaBVLMmgWR0Cn/ZCLMs6JdX2UKGgGaAloD0MI94+F6BA48L+UhpRSlGgVSzJoFkdAp//a+SKWLXV9lChoBmgJaA9DCMb7cfvlU/a/lIaUUpRoFUsyaBZHQKf/m2Yv38J1fZQoaAZoCWgPQwjDvMeZJizzv5SGlFKUaBVLMmgWR0Cn/zDO1OTJdX2UKGgGaAloD0MIyLWhYpw//L+UhpRSlGgVSzJoFkdAp/7S5VfeDXV9lChoBmgJaA9DCI7qdCDrKeW/lIaUUpRoFUsyaBZHQKgBO1jy4F11fZQoaAZoCWgPQwjj4xOy85YAwJSGlFKUaBVLMmgWR0CoAPvkzXSSdX2UKGgGaAloD0MIzZVBtcGJ+b+UhpRSlGgVSzJoFkdAqACRWDHwPXV9lChoBmgJaA9DCJgUH5+Q3fC/lIaUUpRoFUsyaBZHQKgAM4LCvX91fZQoaAZoCWgPQwhCJa5jXDEAwJSGlFKUaBVLMmgWR0CoAndC3PRidX2UKGgGaAloD0MIorjjTX4LAMCUhpRSlGgVSzJoFkdAqAI3/FR51XV9lChoBmgJaA9DCNk+5C1Xf/i/lIaUUpRoFUsyaBZHQKgBzXCj1wp1fZQoaAZoCWgPQwijy5vDtdr5v5SGlFKUaBVLMmgWR0CoAW93KSxJdX2UKGgGaAloD0MI32+044af+7+UhpRSlGgVSzJoFkdAqAPDFERao3V9lChoBmgJaA9DCM0d/S/Xovq/lIaUUpRoFUsyaBZHQKgDg6mwaBJ1fZQoaAZoCWgPQwj3kzE+zB77v5SGlFKUaBVLMmgWR0CoAxknb7CSdX2UKGgGaAloD0MIWAG+27xx8L+UhpRSlGgVSzJoFkdAqAK7YGt6onV9lChoBmgJaA9DCPuT+NwJ9u+/lIaUUpRoFUsyaBZHQKgFCEQGwA51fZQoaAZoCWgPQwi6ZYf4h631v5SGlFKUaBVLMmgWR0CoBMjBl+VkdX2UKGgGaAloD0MICB9KtORx47+UhpRSlGgVSzJoFkdAqAReFrVOK3V9lChoBmgJaA9DCIgOgSOBRv2/lIaUUpRoFUsyaBZHQKgEAKJEYwZ1ZS4="
|
60 |
+
},
|
61 |
+
"ep_success_buffer": {
|
62 |
+
":type:": "<class 'collections.deque'>",
|
63 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
+
},
|
65 |
+
"_n_updates": 50000,
|
66 |
+
"n_steps": 5,
|
67 |
+
"gamma": 0.99,
|
68 |
+
"gae_lambda": 1.0,
|
69 |
+
"ent_coef": 0.0,
|
70 |
+
"vf_coef": 0.5,
|
71 |
+
"max_grad_norm": 0.5,
|
72 |
+
"normalize_advantage": false,
|
73 |
+
"observation_space": {
|
74 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
+
":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
|
76 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
+
"_shape": null,
|
78 |
+
"dtype": null,
|
79 |
+
"_np_random": null
|
80 |
+
},
|
81 |
+
"action_space": {
|
82 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
+
":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
84 |
+
"dtype": "float32",
|
85 |
+
"_shape": [
|
86 |
+
3
|
87 |
+
],
|
88 |
+
"low": "[-1. -1. -1.]",
|
89 |
+
"high": "[1. 1. 1.]",
|
90 |
+
"bounded_below": "[ True True True]",
|
91 |
+
"bounded_above": "[ True True True]",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 4
|
95 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:83158da20a81dbee1003a960c95494d2277bdd295ef3856438ce78de576ce90a
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:682c5c7b9c0bdc6cb8ca7aa84af88e7b570868b2266da24ac59d1c6ddc83beed
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.6
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7db7832c4790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7db7832c84c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690220124525456275, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAi+/YPrA2iruNQBw/i+/YPrA2iruNQBw/i+/YPrA2iruNQBw/i+/YPrA2iruNQBw/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAADdynP15imD9n8qm/6aDJv0fx3j+FOfG+Q8c9v9zUVz/iDpY/CwKUPngPjT8lsMO/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACL79g+sDaKu41AHD/Qg9g7lTiCut89VTyL79g+sDaKu41AHD/Qg9g7lTiCut89VTyL79g+sDaKu41AHD/Qg9g7lTiCut89VTyL79g+sDaKu41AHD/Qg9g7lTiCut89VTyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.42370257 -0.00421795 0.61035997]\n [ 0.42370257 -0.00421795 0.61035997]\n [ 0.42370257 -0.00421795 0.61035997]\n [ 0.42370257 -0.00421795 0.61035997]]", "desired_goal": "[[ 1.3114029 1.1905019 -1.32771 ]\n [-1.5752231 1.7417382 -0.47114196]\n [-0.74132174 0.8430917 1.1723292 ]\n [ 0.2890781 1.1020346 -1.528813 ]]", "observation": "[[ 0.42370257 -0.00421795 0.61035997 0.00660751 -0.00099351 0.01301524]\n [ 0.42370257 -0.00421795 0.61035997 0.00660751 -0.00099351 0.01301524]\n [ 0.42370257 -0.00421795 0.61035997 0.00660751 -0.00099351 0.01301524]\n [ 0.42370257 -0.00421795 0.61035997 0.00660751 -0.00099351 0.01301524]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA+RMOPcQ+9L0siSY8ZGNNPd8fNzxyHJc+VWwuPRtj6b2vAHc+MZzhPam+Cr6sHaQ9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.03468702 -0.11926034 0.01016454]\n [ 0.05014361 0.01117703 0.2951389 ]\n [ 0.04258378 -0.11395856 0.24121355]\n [ 0.11016119 -0.13549294 0.08013472]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIrB+b5EdcAcCUhpRSlIwBbJRLMowBdJRHQKfhSFkhA4Z1fZQoaAZoCWgPQwhEboYb8Pnwv5SGlFKUaBVLMmgWR0Cn4QjZlFtsdX2UKGgGaAloD0MI/dtlv+40/7+UhpRSlGgVSzJoFkdAp+CeogmqpHV9lChoBmgJaA9DCDY7Un3nl/q/lIaUUpRoFUsyaBZHQKfgQL/jsD51fZQoaAZoCWgPQwg8aHbdW9Hzv5SGlFKUaBVLMmgWR0Cn4n1nVXmvdX2UKGgGaAloD0MI3SQGgZWD+7+UhpRSlGgVSzJoFkdAp+I98PWhAXV9lChoBmgJaA9DCLmLMEW59Py/lIaUUpRoFUsyaBZHQKfh00ojOcF1fZQoaAZoCWgPQwjFVPoJZ7f9v5SGlFKUaBVLMmgWR0Cn4XVfeDWcdX2UKGgGaAloD0MIcEG2LF+X/b+UhpRSlGgVSzJoFkdAp+O6XjU/fXV9lChoBmgJaA9DCP5HpkOnZ/6/lIaUUpRoFUsyaBZHQKfjesvqTr51fZQoaAZoCWgPQwjgTEwXYvX8v5SGlFKUaBVLMmgWR0Cn4xAtnPE9dX2UKGgGaAloD0MIOXtntFVJ/r+UhpRSlGgVSzJoFkdAp+KyFqSHM3V9lChoBmgJaA9DCI5aYfpeQ/2/lIaUUpRoFUsyaBZHQKfk8MG5c1R1fZQoaAZoCWgPQwh0sz9QbtsDwJSGlFKUaBVLMmgWR0Cn5LFKCg9NdX2UKGgGaAloD0MIowbTMHzkAcCUhpRSlGgVSzJoFkdAp+RGmP5pJ3V9lChoBmgJaA9DCNkkP+JXbPq/lIaUUpRoFUsyaBZHQKfj6L4vexh1fZQoaAZoCWgPQwj4F0FjJpHwv5SGlFKUaBVLMmgWR0Cn5iXiJfpmdX2UKGgGaAloD0MIO1PovMauAMCUhpRSlGgVSzJoFkdAp+XmY0EX+HV9lChoBmgJaA9DCEFn0qbqXv+/lIaUUpRoFUsyaBZHQKfle9YfW+Z1fZQoaAZoCWgPQwjm6scm+VH6v5SGlFKUaBVLMmgWR0Cn5R3mFJxvdX2UKGgGaAloD0MIWU3XE13X8L+UhpRSlGgVSzJoFkdAp+diRGMGYHV9lChoBmgJaA9DCCTQYFPnEfm/lIaUUpRoFUsyaBZHQKfnIrbQC0Z1fZQoaAZoCWgPQwhPrimQ2dnyv5SGlFKUaBVLMmgWR0Cn5rgfEGaAdX2UKGgGaAloD0MIERyXcVMD/b+UhpRSlGgVSzJoFkdAp+ZaFVT723V9lChoBmgJaA9DCHLdlPJaCeu/lIaUUpRoFUsyaBZHQKfonJ1aGHp1fZQoaAZoCWgPQwiI2jaMguDuv5SGlFKUaBVLMmgWR0Cn6F0i6g/UdX2UKGgGaAloD0MIBtZx/FAp/7+UhpRSlGgVSzJoFkdAp+fyoAGSp3V9lChoBmgJaA9DCL71Yb1Ra/a/lIaUUpRoFUsyaBZHQKfnlPuXu3N1fZQoaAZoCWgPQwgfuwuUFNjlv5SGlFKUaBVLMmgWR0Cn6dTPSlWPdX2UKGgGaAloD0MIqFfKMsQx6L+UhpRSlGgVSzJoFkdAp+mVTR6WxHV9lChoBmgJaA9DCMSxLm6jAeG/lIaUUpRoFUsyaBZHQKfpKpYLb6B1fZQoaAZoCWgPQwhl4lZBDPTnv5SGlFKUaBVLMmgWR0Cn6MynUDuCdX2UKGgGaAloD0MIQ6m9iLaj97+UhpRSlGgVSzJoFkdAp+sH+sHSnnV9lChoBmgJaA9DCNx/ZDp0+u+/lIaUUpRoFUsyaBZHQKfqyGVzIWB1fZQoaAZoCWgPQwhaRX9o5gkAwJSGlFKUaBVLMmgWR0Cn6l2SlnAZdX2UKGgGaAloD0MIvw0xXvOq37+UhpRSlGgVSzJoFkdAp+n/vx6OYXV9lChoBmgJaA9DCFRW0/VE1/m/lIaUUpRoFUsyaBZHQKfsQSteUpx1fZQoaAZoCWgPQwgWURN9Por9v5SGlFKUaBVLMmgWR0Cn7AGVZ9uxdX2UKGgGaAloD0MIWI6QgTw747+UhpRSlGgVSzJoFkdAp+uW6GxlhHV9lChoBmgJaA9DCDZc5J6ubva/lIaUUpRoFUsyaBZHQKfrOQJ5VwR1fZQoaAZoCWgPQwh1yThGssf3v5SGlFKUaBVLMmgWR0Cn7hV5B1LbdX2UKGgGaAloD0MI3UHsTKEz/L+UhpRSlGgVSzJoFkdAp+3W3hGYr3V9lChoBmgJaA9DCEZ55uWwu/q/lIaUUpRoFUsyaBZHQKftbN0NjLB1fZQoaAZoCWgPQwh7Lei9MQT1v5SGlFKUaBVLMmgWR0Cn7Q/LDAJtdX2UKGgGaAloD0MIho2yfjPx/b+UhpRSlGgVSzJoFkdAp/AGIGhVVHV9lChoBmgJaA9DCA0a+ie4GPa/lIaUUpRoFUsyaBZHQKfvx336AOJ1fZQoaAZoCWgPQwggJXZtb7f2v5SGlFKUaBVLMmgWR0Cn712XkYGddX2UKGgGaAloD0MIL9/6sN7o/L+UhpRSlGgVSzJoFkdAp+8Ac5sCT3V9lChoBmgJaA9DCPGD86ljFfW/lIaUUpRoFUsyaBZHQKfyCS2Yv391fZQoaAZoCWgPQwi6LZELziD3v5SGlFKUaBVLMmgWR0Cn8cpuEVWTdX2UKGgGaAloD0MILxhcc0d/57+UhpRSlGgVSzJoFkdAp/Fgx8D0UXV9lChoBmgJaA9DCPFIvDyd6/e/lIaUUpRoFUsyaBZHQKfxA8XenAJ1fZQoaAZoCWgPQwjqP2t+/MUBwJSGlFKUaBVLMmgWR0Cn9Ftf5ULldX2UKGgGaAloD0MI/HJmu0Jf9L+UhpRSlGgVSzJoFkdAp/QeryUcGXV9lChoBmgJaA9DCGUZ4lgXd/2/lIaUUpRoFUsyaBZHQKfztPE87p51fZQoaAZoCWgPQwhDy7p/LETmv5SGlFKUaBVLMmgWR0Cn81nyd4FBdX2UKGgGaAloD0MI5Xyx9+JL+r+UhpRSlGgVSzJoFkdAp/Zw66reZXV9lChoBmgJaA9DCGe2K/TB8vG/lIaUUpRoFUsyaBZHQKf2MlO45Lh1fZQoaAZoCWgPQwhUxOkkW13pv5SGlFKUaBVLMmgWR0Cn9cikwevIdX2UKGgGaAloD0MI+aOoM/fwAcCUhpRSlGgVSzJoFkdAp/VrkuHvdHV9lChoBmgJaA9DCAg+BitOtey/lIaUUpRoFUsyaBZHQKf4bvKlpGp1fZQoaAZoCWgPQwglXTP5Zpvrv5SGlFKUaBVLMmgWR0Cn+DAYgq3FdX2UKGgGaAloD0MIsoS1MXbC7L+UhpRSlGgVSzJoFkdAp/fGQp4KQnV9lChoBmgJaA9DCMssQrEVNPO/lIaUUpRoFUsyaBZHQKf3aOearm11fZQoaAZoCWgPQwg7URISaZv6v5SGlFKUaBVLMmgWR0Cn+oA/LTx5dX2UKGgGaAloD0MIqTP3kPB9/7+UhpRSlGgVSzJoFkdAp/pC6BiCrnV9lChoBmgJaA9DCBMQk3Ahj/y/lIaUUpRoFUsyaBZHQKf52Ti83/B1fZQoaAZoCWgPQwiBeF2/YDf+v5SGlFKUaBVLMmgWR0Cn+XzTWoWIdX2UKGgGaAloD0MIWoEhq1s947+UhpRSlGgVSzJoFkdAp/wYe5nUUnV9lChoBmgJaA9DCK4oJQSr6vS/lIaUUpRoFUsyaBZHQKf72O09hZ11fZQoaAZoCWgPQwhRo5BkVu/vv5SGlFKUaBVLMmgWR0Cn+25K3/gjdX2UKGgGaAloD0MI/kXQmEkU+b+UhpRSlGgVSzJoFkdAp/sQWBSUDHV9lChoBmgJaA9DCBcoKbAAJvu/lIaUUpRoFUsyaBZHQKf9XlT3qRl1fZQoaAZoCWgPQwjCwkmaP6bpv5SGlFKUaBVLMmgWR0Cn/R7aqS5idX2UKGgGaAloD0MIYW2MnfCS+L+UhpRSlGgVSzJoFkdAp/y0sUZeiXV9lChoBmgJaA9DCGaDTDJylvO/lIaUUpRoFUsyaBZHQKf8Vs+mm+F1fZQoaAZoCWgPQwi2hHzQs9nqv5SGlFKUaBVLMmgWR0Cn/piYkVvddX2UKGgGaAloD0MIguLHmLuW4b+UhpRSlGgVSzJoFkdAp/5ZBVuJlHV9lChoBmgJaA9DCL00RYDTe/C/lIaUUpRoFUsyaBZHQKf97nlnyup1fZQoaAZoCWgPQwgaFqOutbf+v5SGlFKUaBVLMmgWR0Cn/ZCLMs6JdX2UKGgGaAloD0MI94+F6BA48L+UhpRSlGgVSzJoFkdAp//a+SKWLXV9lChoBmgJaA9DCMb7cfvlU/a/lIaUUpRoFUsyaBZHQKf/m2Yv38J1fZQoaAZoCWgPQwjDvMeZJizzv5SGlFKUaBVLMmgWR0Cn/zDO1OTJdX2UKGgGaAloD0MIyLWhYpw//L+UhpRSlGgVSzJoFkdAp/7S5VfeDXV9lChoBmgJaA9DCI7qdCDrKeW/lIaUUpRoFUsyaBZHQKgBO1jy4F11fZQoaAZoCWgPQwjj4xOy85YAwJSGlFKUaBVLMmgWR0CoAPvkzXSSdX2UKGgGaAloD0MIzZVBtcGJ+b+UhpRSlGgVSzJoFkdAqACRWDHwPXV9lChoBmgJaA9DCJgUH5+Q3fC/lIaUUpRoFUsyaBZHQKgAM4LCvX91fZQoaAZoCWgPQwhCJa5jXDEAwJSGlFKUaBVLMmgWR0CoAndC3PRidX2UKGgGaAloD0MIorjjTX4LAMCUhpRSlGgVSzJoFkdAqAI3/FR51XV9lChoBmgJaA9DCNk+5C1Xf/i/lIaUUpRoFUsyaBZHQKgBzXCj1wp1fZQoaAZoCWgPQwijy5vDtdr5v5SGlFKUaBVLMmgWR0CoAW93KSxJdX2UKGgGaAloD0MI32+044af+7+UhpRSlGgVSzJoFkdAqAPDFERao3V9lChoBmgJaA9DCM0d/S/Xovq/lIaUUpRoFUsyaBZHQKgDg6mwaBJ1fZQoaAZoCWgPQwj3kzE+zB77v5SGlFKUaBVLMmgWR0CoAxknb7CSdX2UKGgGaAloD0MIWAG+27xx8L+UhpRSlGgVSzJoFkdAqAK7YGt6onV9lChoBmgJaA9DCPuT+NwJ9u+/lIaUUpRoFUsyaBZHQKgFCEQGwA51fZQoaAZoCWgPQwi6ZYf4h631v5SGlFKUaBVLMmgWR0CoBMjBl+VkdX2UKGgGaAloD0MICB9KtORx47+UhpRSlGgVSzJoFkdAqAReFrVOK3V9lChoBmgJaA9DCIgOgSOBRv2/lIaUUpRoFUsyaBZHQKgEAKJEYwZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (599 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -1.5218116792850196, "std_reward": 0.46443814202421574, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-24T18:26:43.486226"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dd84fe2631556174a7a4a874d9d2f5329ec82f39c0f3fe00081872544542f56d
|
3 |
+
size 2387
|