Initial commit
Browse files- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +109 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +9 -0
- config.json +1 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1579.06 +/- 450.21
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b95c51e5afbaab4895f00ac0800a7207db9de0cf4771a04d712b4f301d662b19
|
3 |
+
size 129431
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f46f3f436d0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f46f3f43760>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f46f3f437f0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f46f3f43880>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f46f3f43910>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f46f3f439a0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f46f3f43a30>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f46f3f43ac0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f46f3f43b50>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f46f3f43be0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f46f3f43c70>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f46f3f43d00>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f46f3f50500>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
26 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
27 |
+
"optimizer_kwargs": {
|
28 |
+
"alpha": 0.99,
|
29 |
+
"eps": 1e-05,
|
30 |
+
"weight_decay": 0
|
31 |
+
}
|
32 |
+
},
|
33 |
+
"num_timesteps": 2000000,
|
34 |
+
"_total_timesteps": 2000000,
|
35 |
+
"_num_timesteps_at_start": 0,
|
36 |
+
"seed": null,
|
37 |
+
"action_noise": null,
|
38 |
+
"start_time": 1688047336529677539,
|
39 |
+
"learning_rate": 0.00095,
|
40 |
+
"tensorboard_log": null,
|
41 |
+
"_last_obs": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAENNQr+QV/k9a4kIP7Ic+z4iklq/svXkPnFlKj9GO+o9Az4uPznY3r2CbCQ+b21qPZSVgL/B1hfAVDqkPuSSCr902Wa+s7SFv3H+Wj/y6OS9OssFv6fooT+ZG2W/9n5yveJKXz97tAfAYOoVP81sg79FnGk9F6jNPm5ECD+U0Zk/rM27vxFnOL6HORk/e6WQvvHWLT9X9xS/Qd0rPwanjb/QGJm/wxllP0OPV79BS2k/u2ETv2DyiTwUVxU/ZLGVv4B7JL6+kHQ/RK8sv6qWZj/iSl8/e7QHwGDqFT/NbIO/wsnyPpS63z4RHgc/IiVKP3g2yz+jvGs/wA0dvwyaR7//UoE9lyaRv5GTHb/BMZ8/uaAVP5k0mb59KFw/dEGQvyLunD8jvxu/agqcvxeMJL6iZKu+CCfhvwoFxz+MUCy/zL+SvwZ38T5g6hU/GVR5P5pgUT4G5pA+Y0wKP2inRz+MYSo/vYaYPvHbb77mcwq/tfMyP7ckHryHZ2m/8PcqvCFbMz6uE7U/TwrsPjckfD/ICrY+sAedPw0Ihr53S4s+jclNP9Mbpr7uzJ8/pZ/WPsy/kr8Gd/E+YOoVPxlUeT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
44 |
+
},
|
45 |
+
"_last_episode_starts": {
|
46 |
+
":type:": "<class 'numpy.ndarray'>",
|
47 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
48 |
+
},
|
49 |
+
"_last_original_obs": {
|
50 |
+
":type:": "<class 'numpy.ndarray'>",
|
51 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACQsay1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAK20OPgAAAACbz/u/AAAAADwhybsAAAAAZMLsPwAAAADaHym9AAAAACNg9T8AAAAAN4kGvgAAAADCCN+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAt8xbtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGv0gD0AAAAAg2fkvwAAAAC3yuG9AAAAADoq5j8AAAAAE6EbvQAAAAAPrOo/AAAAAKGbh70AAAAApYbyvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFklBDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDzNX68AAAAAHwL/b8AAAAApxEevQAAAACkMfM/AAAAACt7Lz0AAAAA9ebbPwAAAAD3oIy9AAAAAOtw2r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABi0562AACAPwAAAAAAAAAAAAAAAAAAAAAAAACACgiSPQAAAAB6cvy/AAAAAGulX70AAAAAuFjqPwAAAACv9N+9AAAAAMzS7T8AAAAAoOwJvQAAAAAiYv6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
52 |
+
},
|
53 |
+
"_episode_num": 0,
|
54 |
+
"use_sde": true,
|
55 |
+
"sde_sample_freq": -1,
|
56 |
+
"_current_progress_remaining": 0.0,
|
57 |
+
"_stats_window_size": 100,
|
58 |
+
"ep_info_buffer": {
|
59 |
+
":type:": "<class 'collections.deque'>",
|
60 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHrioHPeHi6MAWyUTegDjAF0lEdArc/Y1pCa7XV9lChoBkdAnnu3SBshxGgHTegDaAhHQK3S1S9/SYx1fZQoaAZHQKBCNfCyhSNoB03oA2gIR0Ct1yZof0VadX2UKGgGR0CgRPCWVu76aAdN6ANoCEdArdtTXFtKqXV9lChoBkdAoARkkMTewmgHTegDaAhHQK3g+icoYvZ1fZQoaAZHQKCVGFpPAO9oB03oA2gIR0Ct445iVjZtdX2UKGgGR0CbXdL1VYITaAdN6ANoCEdAreaHt6X0G3V9lChoBkdAnBbe/tY0VWgHTegDaAhHQK3pVp5eJHl1fZQoaAZHQJs2vgQ6IWRoB03oA2gIR0Ct7o77Kq4pdX2UKGgGR0CdiKzNliBoaAdN6ANoCEdArfGcB0ZFX3V9lChoBkdAeQQuqm0mdGgHTegDaAhHQK32CIC2c8V1fZQoaAZHQHMUkS7GvOhoB03oA2gIR0Ct+l0bkwN9dX2UKGgGR0Cb+eZTyauwaAdN6ANoCEdArgA6ASWZ7XV9lChoBkdAmZTzCgsbvWgHTegDaAhHQK4C1dSl3yJ1fZQoaAZHQJ1XVv73wkRoB03oA2gIR0CuBdSGi5/cdX2UKGgGR0B1CUU/OdGzaAdN6ANoCEdArgihyyUs4HV9lChoBkdAnZxajN6gNGgHTegDaAhHQK4NvvTgEU11fZQoaAZHQJyxt2aDwphoB03oA2gIR0CuEHvXCj1xdX2UKGgGR0CcYN/SYw7DaAdN6ANoCEdArhTA51eSjnV9lChoBkdAmwEeEytV72gHTegDaAhHQK4ZDhESdvt1fZQoaAZHQJp6drylN11oB03oA2gIR0CuHu0Rvm5ldX2UKGgGR0Cd6b2exwAEaAdN6ANoCEdAriF5aTwDvHV9lChoBkdAnmax7u2JBWgHTegDaAhHQK4kZGwzLwF1fZQoaAZHQJ5TsdIXj2loB03oA2gIR0CuJw+HaewtdX2UKGgGR0CcwQFnZkCnaAdN6ANoCEdAriwUMTewcHV9lChoBkdAmkftF8XvY2gHTegDaAhHQK4uqB5ooNN1fZQoaAZHQJ5wLPyCnP5oB03oA2gIR0CuMtJhnanKdX2UKGgGR0CJJWFnIyTIaAdN6ANoCEdArjchoXbdrXV9lChoBkdAnn3wfyPMjmgHTegDaAhHQK49jJWeYlZ1fZQoaAZHQHtWYGIKtxNoB03oA2gIR0CuQB5/LDAKdX2UKGgGR0CQO/mdy1eCaAdN6ANoCEdArkMYDxLCenV9lChoBkdAnM2cVpKzzGgHTegDaAhHQK5F3Sb6P811fZQoaAZHQJzUho11nuloB03oA2gIR0CuSwANgBtDdX2UKGgGR0CeIevhIe5naAdN6ANoCEdArk2OclPac3V9lChoBkdAnjge5jH4oWgHTegDaAhHQK5RYKtPpIN1fZQoaAZHQJ8rqV5a/ypoB03oA2gIR0CuVXUlqrR0dX2UKGgGR0CehTJyQxN7aAdN6ANoCEdArlwErK/203V9lChoBkdAn3YDOxB3R2gHTegDaAhHQK5etHmRvFZ1fZQoaAZHQHt8BInSfDloB03oA2gIR0CuYbGdy1eCdX2UKGgGR0CW9K0MPSUkaAdN6ANoCEdArmR5s41gpnV9lChoBkdAnuCxH09QoGgHTegDaAhHQK5prjLjght1fZQoaAZHQJDvn09QoCxoB03oA2gIR0CubHDe9Ba+dX2UKGgGR0CeA16Gxlg/aAdN6ANoCEdArnBs6xPfsXV9lChoBkdAdGbg9/z8QGgHTegDaAhHQK50vumaYu11fZQoaAZHQJ46B4MWoFVoB03oA2gIR0Cue1aJhvzfdX2UKGgGR0CfjGSLqD9PaAdN6ANoCEdArn3lOVPepHV9lChoBkdAm+AIkJKJ22gHTegDaAhHQK6A1yDIzWR1fZQoaAZHQJtJ3ezlcQloB03oA2gIR0Cug4yX2M86dX2UKGgGR0Cc1zv114gSaAdN6ANoCEdAroiineizs3V9lChoBkdAncMirPt2LmgHTegDaAhHQK6LOhFmWdF1fZQoaAZHQJsMDJW/8EVoB03oA2gIR0Cujuv/io87dX2UKGgGR0CejAMg2ZRbaAdN6ANoCEdArpMXmig00nV9lChoBkdAdUfyXD3ueGgHTegDaAhHQK6aHAPd2xJ1fZQoaAZHQJsr9baAWi1oB03oA2gIR0CunLoRIz3zdX2UKGgGR0CdOtWK/EflaAdN6ANoCEdArp/B86V+qnV9lChoBkdAl9JB2St/4WgHTegDaAhHQK6ihmbsniN1fZQoaAZHQJrUPmQr+YNoB03oA2gIR0Cup7H8sMAndX2UKGgGR0B2CshKUVzqaAdN6ANoCEdArqpK/KyOaXV9lChoBkdAnRaG3rleW2gHTegDaAhHQK6tz1JUYKp1fZQoaAZHQJsx+cawUxpoB03oA2gIR0Cuscxkd3jddX2UKGgGR0CeuyrPMSsbaAdN6ANoCEdArrjgzi0fHXV9lChoBkdAna5UQkHD8GgHTegDaAhHQK67ejrzGxV1fZQoaAZHQJ5td5s0pExoB03oA2gIR0CuvnXP7el9dX2UKGgGR0CfAU/smfGuaAdN6ANoCEdArsE9ruYx+XV9lChoBkdAnVtLcGkeqGgHTegDaAhHQK7GbdBSk0t1fZQoaAZHQJ/ut5NXYDloB03oA2gIR0CuyQ95prULdX2UKGgGR0CI8FtQbdadaAdN6ANoCEdArsxqlenhsXV9lChoBkdAnIz54SpR42gHTegDaAhHQK7QVoQFs551fZQoaAZHQJzn162OQyRoB03oA2gIR0Cu139FOO81dX2UKGgGR0CffecmBvrGaAdN6ANoCEdArtoLFjurqHV9lChoBkdAnhRNIsiB5GgHTegDaAhHQK7c8/1QIld1fZQoaAZHQJ3FrNZ/0/ZoB03oA2gIR0Cu36gx8D0UdX2UKGgGR0CeSYL3sXzlaAdN6ANoCEdAruTPm7rcCnV9lChoBkdAnlUePFNtZWgHTegDaAhHQK7nd3NcGC91fZQoaAZHQJ81Msd1dPdoB03oA2gIR0Cu6oIdU83ddX2UKGgGR0CfQcZ1V5ryaAdN6ANoCEdAru54tOEdvXV9lChoBkdAm7ROeOGTLWgHTegDaAhHQK72ag7HQyB1fZQoaAZHQJyEzO8kD6poB03oA2gIR0Cu+RMI3R5UdX2UKGgGR0B077ZqVQhwaAdN6ANoCEdArvwdIkJKJ3V9lChoBkdAnjVzOxB3R2gHTegDaAhHQK7+0B91EE11fZQoaAZHQJ7DgCih37loB03oA2gIR0CvA+LIYFaCdX2UKGgGR0CgeQ+ZgG8maAdN6ANoCEdArwZ1Cqp97XV9lChoBkdAnDs1fiPyTmgHTegDaAhHQK8JcBT4tYl1fZQoaAZHQJ5y2aLGaQVoB03oA2gIR0CvDUPrGBFvdX2UKGgGR0CQXkKtPpIMaAdN6ANoCEdArxU10T101nV9lChoBkdAngmo1+AmRmgHTegDaAhHQK8Xy0G/vfF1fZQoaAZHQJ3U/ndO6/ZoB03oA2gIR0CvGrHKwIMSdX2UKGgGR0Cc6Ii9IwueaAdN6ANoCEdArx19pZfUnXV9lChoBkdAnaA00Jng52gHTegDaAhHQK8in9Q40dl1fZQoaAZHQJW3Gdd3SrpoB03oA2gIR0CvJTofr8iwdX2UKGgGR0Cbv2WAwwj/aAdN6ANoCEdArygx+pfhM3V9lChoBkdAnYHrLZBcA2gHTegDaAhHQK8rz1tfoid1fZQoaAZHQHsaZUo8ZDRoB03oA2gIR0CvM8jQzDXOdX2UKGgGR0Cc6rJa7mMgaAdN6ANoCEdArzaNPk7wKHV9lChoBkdAmdZ7DIikf2gHTegDaAhHQK85h9mYjSp1fZQoaAZHQJ5ELqAz545oB03oA2gIR0CvPD+GGmDUdX2UKGgGR0CbZE9FnZkDaAdN6ANoCEdAr0FvJ3gUDnV9lChoBkdAkjjL349HMGgHTegDaAhHQK9EG189fTl1fZQoaAZHQIiyChBZ6ldoB03oA2gIR0CvRxl+uvECdX2UKGgGR0CazTc1fmcOaAdN6ANoCEdAr0qJkbxVhnVlLg=="
|
61 |
+
},
|
62 |
+
"ep_success_buffer": {
|
63 |
+
":type:": "<class 'collections.deque'>",
|
64 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
65 |
+
},
|
66 |
+
"_n_updates": 100000,
|
67 |
+
"n_steps": 5,
|
68 |
+
"gamma": 0.99,
|
69 |
+
"gae_lambda": 1.0,
|
70 |
+
"ent_coef": 0.0,
|
71 |
+
"vf_coef": 0.5,
|
72 |
+
"max_grad_norm": 0.5,
|
73 |
+
"normalize_advantage": true,
|
74 |
+
"observation_space": {
|
75 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
76 |
+
":serialized:": "gAWVlwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxyFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaBVLHIWUaBl0lFKUjAZfc2hhcGWUSxyFlIwDbG93lGgRKJZwAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaAtLHIWUaBl0lFKUjARoaWdolGgRKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBl0lFKUjAhsb3dfcmVwcpSMBC1pbmaUjAloaWdoX3JlcHKUjANpbmaUjApfbnBfcmFuZG9tlE51Yi4=",
|
77 |
+
"dtype": "float32",
|
78 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
79 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
80 |
+
"_shape": [
|
81 |
+
28
|
82 |
+
],
|
83 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
84 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
85 |
+
"low_repr": "-inf",
|
86 |
+
"high_repr": "inf",
|
87 |
+
"_np_random": null
|
88 |
+
},
|
89 |
+
"action_space": {
|
90 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
91 |
+
":serialized:": "gAWVzwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjAQtMS4wlIwJaGlnaF9yZXBylIwDMS4wlIwKX25wX3JhbmRvbZROdWIu",
|
92 |
+
"dtype": "float32",
|
93 |
+
"bounded_below": "[ True True True True True True True True]",
|
94 |
+
"bounded_above": "[ True True True True True True True True]",
|
95 |
+
"_shape": [
|
96 |
+
8
|
97 |
+
],
|
98 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
99 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
100 |
+
"low_repr": "-1.0",
|
101 |
+
"high_repr": "1.0",
|
102 |
+
"_np_random": null
|
103 |
+
},
|
104 |
+
"n_envs": 4,
|
105 |
+
"lr_schedule": {
|
106 |
+
":type:": "<class 'function'>",
|
107 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PIS13MY/FhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
108 |
+
}
|
109 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0ae4fef1b7bc07b9cf7816055668f17840e95c9c7c8c427dd11479c1e3205240
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:426e65a28217788955d8a868746c3e0ffd63e514c68e7f172bc0c04745bee150
|
3 |
+
size 56894
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f46f3f436d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f46f3f43760>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f46f3f437f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f46f3f43880>", "_build": "<function ActorCriticPolicy._build at 0x7f46f3f43910>", "forward": "<function ActorCriticPolicy.forward at 0x7f46f3f439a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f46f3f43a30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f46f3f43ac0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f46f3f43b50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f46f3f43be0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f46f3f43c70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f46f3f43d00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f46f3f50500>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688047336529677539, "learning_rate": 0.00095, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAENNQr+QV/k9a4kIP7Ic+z4iklq/svXkPnFlKj9GO+o9Az4uPznY3r2CbCQ+b21qPZSVgL/B1hfAVDqkPuSSCr902Wa+s7SFv3H+Wj/y6OS9OssFv6fooT+ZG2W/9n5yveJKXz97tAfAYOoVP81sg79FnGk9F6jNPm5ECD+U0Zk/rM27vxFnOL6HORk/e6WQvvHWLT9X9xS/Qd0rPwanjb/QGJm/wxllP0OPV79BS2k/u2ETv2DyiTwUVxU/ZLGVv4B7JL6+kHQ/RK8sv6qWZj/iSl8/e7QHwGDqFT/NbIO/wsnyPpS63z4RHgc/IiVKP3g2yz+jvGs/wA0dvwyaR7//UoE9lyaRv5GTHb/BMZ8/uaAVP5k0mb59KFw/dEGQvyLunD8jvxu/agqcvxeMJL6iZKu+CCfhvwoFxz+MUCy/zL+SvwZ38T5g6hU/GVR5P5pgUT4G5pA+Y0wKP2inRz+MYSo/vYaYPvHbb77mcwq/tfMyP7ckHryHZ2m/8PcqvCFbMz6uE7U/TwrsPjckfD/ICrY+sAedPw0Ihr53S4s+jclNP9Mbpr7uzJ8/pZ/WPsy/kr8Gd/E+YOoVPxlUeT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACQsay1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAK20OPgAAAACbz/u/AAAAADwhybsAAAAAZMLsPwAAAADaHym9AAAAACNg9T8AAAAAN4kGvgAAAADCCN+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAt8xbtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGv0gD0AAAAAg2fkvwAAAAC3yuG9AAAAADoq5j8AAAAAE6EbvQAAAAAPrOo/AAAAAKGbh70AAAAApYbyvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFklBDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDzNX68AAAAAHwL/b8AAAAApxEevQAAAACkMfM/AAAAACt7Lz0AAAAA9ebbPwAAAAD3oIy9AAAAAOtw2r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABi0562AACAPwAAAAAAAAAAAAAAAAAAAAAAAACACgiSPQAAAAB6cvy/AAAAAGulX70AAAAAuFjqPwAAAACv9N+9AAAAAMzS7T8AAAAAoOwJvQAAAAAiYv6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHrioHPeHi6MAWyUTegDjAF0lEdArc/Y1pCa7XV9lChoBkdAnnu3SBshxGgHTegDaAhHQK3S1S9/SYx1fZQoaAZHQKBCNfCyhSNoB03oA2gIR0Ct1yZof0VadX2UKGgGR0CgRPCWVu76aAdN6ANoCEdArdtTXFtKqXV9lChoBkdAoARkkMTewmgHTegDaAhHQK3g+icoYvZ1fZQoaAZHQKCVGFpPAO9oB03oA2gIR0Ct445iVjZtdX2UKGgGR0CbXdL1VYITaAdN6ANoCEdAreaHt6X0G3V9lChoBkdAnBbe/tY0VWgHTegDaAhHQK3pVp5eJHl1fZQoaAZHQJs2vgQ6IWRoB03oA2gIR0Ct7o77Kq4pdX2UKGgGR0CdiKzNliBoaAdN6ANoCEdArfGcB0ZFX3V9lChoBkdAeQQuqm0mdGgHTegDaAhHQK32CIC2c8V1fZQoaAZHQHMUkS7GvOhoB03oA2gIR0Ct+l0bkwN9dX2UKGgGR0Cb+eZTyauwaAdN6ANoCEdArgA6ASWZ7XV9lChoBkdAmZTzCgsbvWgHTegDaAhHQK4C1dSl3yJ1fZQoaAZHQJ1XVv73wkRoB03oA2gIR0CuBdSGi5/cdX2UKGgGR0B1CUU/OdGzaAdN6ANoCEdArgihyyUs4HV9lChoBkdAnZxajN6gNGgHTegDaAhHQK4NvvTgEU11fZQoaAZHQJyxt2aDwphoB03oA2gIR0CuEHvXCj1xdX2UKGgGR0CcYN/SYw7DaAdN6ANoCEdArhTA51eSjnV9lChoBkdAmwEeEytV72gHTegDaAhHQK4ZDhESdvt1fZQoaAZHQJp6drylN11oB03oA2gIR0CuHu0Rvm5ldX2UKGgGR0Cd6b2exwAEaAdN6ANoCEdAriF5aTwDvHV9lChoBkdAnmax7u2JBWgHTegDaAhHQK4kZGwzLwF1fZQoaAZHQJ5TsdIXj2loB03oA2gIR0CuJw+HaewtdX2UKGgGR0CcwQFnZkCnaAdN6ANoCEdAriwUMTewcHV9lChoBkdAmkftF8XvY2gHTegDaAhHQK4uqB5ooNN1fZQoaAZHQJ5wLPyCnP5oB03oA2gIR0CuMtJhnanKdX2UKGgGR0CJJWFnIyTIaAdN6ANoCEdArjchoXbdrXV9lChoBkdAnn3wfyPMjmgHTegDaAhHQK49jJWeYlZ1fZQoaAZHQHtWYGIKtxNoB03oA2gIR0CuQB5/LDAKdX2UKGgGR0CQO/mdy1eCaAdN6ANoCEdArkMYDxLCenV9lChoBkdAnM2cVpKzzGgHTegDaAhHQK5F3Sb6P811fZQoaAZHQJzUho11nuloB03oA2gIR0CuSwANgBtDdX2UKGgGR0CeIevhIe5naAdN6ANoCEdArk2OclPac3V9lChoBkdAnjge5jH4oWgHTegDaAhHQK5RYKtPpIN1fZQoaAZHQJ8rqV5a/ypoB03oA2gIR0CuVXUlqrR0dX2UKGgGR0CehTJyQxN7aAdN6ANoCEdArlwErK/203V9lChoBkdAn3YDOxB3R2gHTegDaAhHQK5etHmRvFZ1fZQoaAZHQHt8BInSfDloB03oA2gIR0CuYbGdy1eCdX2UKGgGR0CW9K0MPSUkaAdN6ANoCEdArmR5s41gpnV9lChoBkdAnuCxH09QoGgHTegDaAhHQK5prjLjght1fZQoaAZHQJDvn09QoCxoB03oA2gIR0CubHDe9Ba+dX2UKGgGR0CeA16Gxlg/aAdN6ANoCEdArnBs6xPfsXV9lChoBkdAdGbg9/z8QGgHTegDaAhHQK50vumaYu11fZQoaAZHQJ46B4MWoFVoB03oA2gIR0Cue1aJhvzfdX2UKGgGR0CfjGSLqD9PaAdN6ANoCEdArn3lOVPepHV9lChoBkdAm+AIkJKJ22gHTegDaAhHQK6A1yDIzWR1fZQoaAZHQJtJ3ezlcQloB03oA2gIR0Cug4yX2M86dX2UKGgGR0Cc1zv114gSaAdN6ANoCEdAroiineizs3V9lChoBkdAncMirPt2LmgHTegDaAhHQK6LOhFmWdF1fZQoaAZHQJsMDJW/8EVoB03oA2gIR0Cujuv/io87dX2UKGgGR0CejAMg2ZRbaAdN6ANoCEdArpMXmig00nV9lChoBkdAdUfyXD3ueGgHTegDaAhHQK6aHAPd2xJ1fZQoaAZHQJsr9baAWi1oB03oA2gIR0CunLoRIz3zdX2UKGgGR0CdOtWK/EflaAdN6ANoCEdArp/B86V+qnV9lChoBkdAl9JB2St/4WgHTegDaAhHQK6ihmbsniN1fZQoaAZHQJrUPmQr+YNoB03oA2gIR0Cup7H8sMAndX2UKGgGR0B2CshKUVzqaAdN6ANoCEdArqpK/KyOaXV9lChoBkdAnRaG3rleW2gHTegDaAhHQK6tz1JUYKp1fZQoaAZHQJsx+cawUxpoB03oA2gIR0Cuscxkd3jddX2UKGgGR0CeuyrPMSsbaAdN6ANoCEdArrjgzi0fHXV9lChoBkdAna5UQkHD8GgHTegDaAhHQK67ejrzGxV1fZQoaAZHQJ5td5s0pExoB03oA2gIR0CuvnXP7el9dX2UKGgGR0CfAU/smfGuaAdN6ANoCEdArsE9ruYx+XV9lChoBkdAnVtLcGkeqGgHTegDaAhHQK7GbdBSk0t1fZQoaAZHQJ/ut5NXYDloB03oA2gIR0CuyQ95prULdX2UKGgGR0CI8FtQbdadaAdN6ANoCEdArsxqlenhsXV9lChoBkdAnIz54SpR42gHTegDaAhHQK7QVoQFs551fZQoaAZHQJzn162OQyRoB03oA2gIR0Cu139FOO81dX2UKGgGR0CffecmBvrGaAdN6ANoCEdArtoLFjurqHV9lChoBkdAnhRNIsiB5GgHTegDaAhHQK7c8/1QIld1fZQoaAZHQJ3FrNZ/0/ZoB03oA2gIR0Cu36gx8D0UdX2UKGgGR0CeSYL3sXzlaAdN6ANoCEdAruTPm7rcCnV9lChoBkdAnlUePFNtZWgHTegDaAhHQK7nd3NcGC91fZQoaAZHQJ81Msd1dPdoB03oA2gIR0Cu6oIdU83ddX2UKGgGR0CfQcZ1V5ryaAdN6ANoCEdAru54tOEdvXV9lChoBkdAm7ROeOGTLWgHTegDaAhHQK72ag7HQyB1fZQoaAZHQJyEzO8kD6poB03oA2gIR0Cu+RMI3R5UdX2UKGgGR0B077ZqVQhwaAdN6ANoCEdArvwdIkJKJ3V9lChoBkdAnjVzOxB3R2gHTegDaAhHQK7+0B91EE11fZQoaAZHQJ7DgCih37loB03oA2gIR0CvA+LIYFaCdX2UKGgGR0CgeQ+ZgG8maAdN6ANoCEdArwZ1Cqp97XV9lChoBkdAnDs1fiPyTmgHTegDaAhHQK8JcBT4tYl1fZQoaAZHQJ5y2aLGaQVoB03oA2gIR0CvDUPrGBFvdX2UKGgGR0CQXkKtPpIMaAdN6ANoCEdArxU10T101nV9lChoBkdAngmo1+AmRmgHTegDaAhHQK8Xy0G/vfF1fZQoaAZHQJ3U/ndO6/ZoB03oA2gIR0CvGrHKwIMSdX2UKGgGR0Cc6Ii9IwueaAdN6ANoCEdArx19pZfUnXV9lChoBkdAnaA00Jng52gHTegDaAhHQK8in9Q40dl1fZQoaAZHQJW3Gdd3SrpoB03oA2gIR0CvJTofr8iwdX2UKGgGR0Cbv2WAwwj/aAdN6ANoCEdArygx+pfhM3V9lChoBkdAnYHrLZBcA2gHTegDaAhHQK8rz1tfoid1fZQoaAZHQHsaZUo8ZDRoB03oA2gIR0CvM8jQzDXOdX2UKGgGR0Cc6rJa7mMgaAdN6ANoCEdArzaNPk7wKHV9lChoBkdAmdZ7DIikf2gHTegDaAhHQK85h9mYjSp1fZQoaAZHQJ5ELqAz545oB03oA2gIR0CvPD+GGmDUdX2UKGgGR0CbZE9FnZkDaAdN6ANoCEdAr0FvJ3gUDnV9lChoBkdAkjjL349HMGgHTegDaAhHQK9EG189fTl1fZQoaAZHQIiyChBZ6ldoB03oA2gIR0CvRxl+uvECdX2UKGgGR0CazTc1fmcOaAdN6ANoCEdAr0qJkbxVhnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": true, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVlwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxyFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaBVLHIWUaBl0lFKUjAZfc2hhcGWUSxyFlIwDbG93lGgRKJZwAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaAtLHIWUaBl0lFKUjARoaWdolGgRKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBl0lFKUjAhsb3dfcmVwcpSMBC1pbmaUjAloaWdoX3JlcHKUjANpbmaUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "low_repr": "-inf", "high_repr": "inf", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVzwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjAQtMS4wlIwJaGlnaF9yZXBylIwDMS4wlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PIS13MY/FhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1579.0574100408935, "std_reward": 450.21131338439505, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-29T15:12:34.831703"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:db37c1a7578975cd625cf2f817a7cc5cfb4c57b9df16666c64ef404ce21a7f9c
|
3 |
+
size 2376
|