SABR22 commited on
Commit
404c261
·
verified ·
1 Parent(s): ec86d00

End of training

Browse files
Files changed (2) hide show
  1. README.md +66 -69
  2. model.safetensors +1 -1
README.md CHANGED
@@ -1,69 +1,66 @@
1
- ---
2
- library_name: transformers
3
- license: apache-2.0
4
- base_model: google/vit-base-patch16-224-in21k
5
- tags:
6
- - generated_from_trainer
7
- metrics:
8
- - accuracy
9
- model-index:
10
- - name: ViT-threat-classification
11
- results: []
12
- ---
13
-
14
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
- should probably proofread and complete it, then remove this comment. -->
16
-
17
- # ViT-threat-classification
18
-
19
- This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an threat classification dataset.
20
- This model was created for a Carleton University computer vision hacking event and serves as a proof of concept rather than complete model. It is trained on an extremely small and limited dataset and the performance is limited.
21
- It achieves the following results on the evaluation set:
22
- - Loss: 0.4579
23
- - Accuracy: 0.875
24
-
25
- ## Model description
26
-
27
- More information needed
28
-
29
- ## Intended uses & limitations
30
-
31
- More information needed
32
-
33
- ## Training and evaluation data
34
-
35
- More information needed
36
-
37
- ## Training procedure
38
-
39
- ### Training hyperparameters
40
-
41
- The following hyperparameters were used during training:
42
- - learning_rate: 5e-05
43
- - train_batch_size: 4
44
- - eval_batch_size: 4
45
- - seed: 42
46
- - gradient_accumulation_steps: 4
47
- - total_train_batch_size: 16
48
- - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
49
- - lr_scheduler_type: linear
50
- - lr_scheduler_warmup_ratio: 0.1
51
- - num_epochs: 5
52
-
53
- ### Training results
54
-
55
- | Training Loss | Epoch | Step | Validation Loss | Accuracy |
56
- |:-------------:|:------:|:----:|:---------------:|:--------:|
57
- | 0.6419 | 0.9756 | 10 | 0.6340 | 0.75 |
58
- | 0.4677 | 1.9512 | 20 | 0.5560 | 0.75 |
59
- | 0.367 | 2.9268 | 30 | 0.4571 | 1.0 |
60
- | 0.3346 | 4.0 | 41 | 0.4751 | 0.75 |
61
- | 0.2395 | 4.8780 | 50 | 0.4579 | 0.875 |
62
-
63
-
64
- ### Framework versions
65
-
66
- - Transformers 4.46.2
67
- - Pytorch 2.5.1+cu124
68
- - Datasets 3.1.0
69
- - Tokenizers 0.20.3
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: google/vit-base-patch16-224-in21k
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: ViT-threat-classification
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # ViT-threat-classification
18
+
19
+ This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.4568
22
+ - Accuracy: 1.0
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 1e-06
42
+ - train_batch_size: 4
43
+ - eval_batch_size: 4
44
+ - seed: 42
45
+ - gradient_accumulation_steps: 4
46
+ - total_train_batch_size: 16
47
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
48
+ - lr_scheduler_type: linear
49
+ - lr_scheduler_warmup_steps: 500
50
+ - num_epochs: 3
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
55
+ |:-------------:|:------:|:----:|:---------------:|:--------:|
56
+ | 0.328 | 0.9756 | 10 | 0.4556 | 0.875 |
57
+ | 0.3226 | 1.9512 | 20 | 0.4736 | 0.75 |
58
+ | 0.3619 | 2.9268 | 30 | 0.4568 | 1.0 |
59
+
60
+
61
+ ### Framework versions
62
+
63
+ - Transformers 4.46.2
64
+ - Pytorch 2.5.1+cu124
65
+ - Datasets 3.1.0
66
+ - Tokenizers 0.20.3
 
 
 
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:47c060193276a6a286c81c342dbffb2cbb9c480efd61ea6fdc0cac1d5f454409
3
  size 343223968
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:50686382be7dce59a9c759c3bbf533eab8dd5b7e6b326a58a13c9d2f807883ac
3
  size 343223968