File size: 23,930 Bytes
a63a2f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 |
#
# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from collections import OrderedDict
from cuda import cudart
from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear
from diffusers.utils.torch_utils import randn_tensor
from enum import Enum, auto
import gc
from io import BytesIO
import numpy as np
import onnx
from onnx import numpy_helper
import onnx_graphsurgeon as gs
import os
from PIL import Image
from polygraphy.backend.common import bytes_from_path
from polygraphy.backend.trt import (
CreateConfig,
ModifyNetworkOutputs,
Profile,
engine_from_bytes,
engine_from_network,
network_from_onnx_path,
save_engine
)
import random
import re
import requests
from scipy import integrate
import tensorrt as trt
import torch
import types
TRT_LOGGER = trt.Logger(trt.Logger.ERROR)
# Map of numpy dtype -> torch dtype
numpy_to_torch_dtype_dict = {
np.uint8 : torch.uint8,
np.int8 : torch.int8,
np.int16 : torch.int16,
np.int32 : torch.int32,
np.int64 : torch.int64,
np.float16 : torch.float16,
np.float32 : torch.float32,
np.float64 : torch.float64,
np.complex64 : torch.complex64,
np.complex128 : torch.complex128
}
if np.version.full_version >= "1.24.0":
numpy_to_torch_dtype_dict[np.bool_] = torch.bool
else:
numpy_to_torch_dtype_dict[np.bool] = torch.bool
# Map of torch dtype -> numpy dtype
torch_to_numpy_dtype_dict = {value : key for (key, value) in numpy_to_torch_dtype_dict.items()}
def unload_model(model):
if model:
del model
torch.cuda.empty_cache()
gc.collect()
def replace_lora_layers(model):
def lora_forward(self, x, scale=None):
return self._torch_forward(x)
for name, module in model.named_modules():
if isinstance(module, LoRACompatibleConv):
in_channels = module.in_channels
out_channels = module.out_channels
kernel_size = module.kernel_size
stride = module.stride
padding = module.padding
dilation = module.dilation
groups = module.groups
bias = module.bias
new_conv = torch.nn.Conv2d(
in_channels,
out_channels,
kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias=bias is not None,
)
new_conv.weight.data = module.weight.data.clone().to(module.weight.data.device)
if bias is not None:
new_conv.bias.data = module.bias.data.clone().to(module.bias.data.device)
# Replace the LoRACompatibleConv layer with the Conv2d layer
path = name.split(".")
sub_module = model
for p in path[:-1]:
sub_module = getattr(sub_module, p)
setattr(sub_module, path[-1], new_conv)
new_conv._torch_forward = new_conv.forward
new_conv.forward = types.MethodType(lora_forward, new_conv)
elif isinstance(module, LoRACompatibleLinear):
in_features = module.in_features
out_features = module.out_features
bias = module.bias
new_linear = torch.nn.Linear(in_features, out_features, bias=bias is not None)
new_linear.weight.data = module.weight.data.clone().to(module.weight.data.device)
if bias is not None:
new_linear.bias.data = module.bias.data.clone().to(module.bias.data.device)
# Replace the LoRACompatibleLinear layer with the Linear layer
path = name.split(".")
sub_module = model
for p in path[:-1]:
sub_module = getattr(sub_module, p)
setattr(sub_module, path[-1], new_linear)
new_linear._torch_forward = new_linear.forward
new_linear.forward = types.MethodType(lora_forward, new_linear)
def merge_loras(model, lora_dict, lora_alphas, lora_scales):
assert len(lora_scales) == len(lora_dict)
for path, lora in lora_dict.items():
print(f"[I] Fusing LoRA: {path}, scale {lora_scales[path]}")
model.load_attn_procs(lora, network_alphas=lora_alphas[path])
model.fuse_lora(lora_scale=lora_scales[path])
return model
def CUASSERT(cuda_ret):
err = cuda_ret[0]
if err != cudart.cudaError_t.cudaSuccess:
raise RuntimeError(f"CUDA ERROR: {err}, error code reference: https://nvidia.github.io/cuda-python/module/cudart.html#cuda.cudart.cudaError_t")
if len(cuda_ret) > 1:
return cuda_ret[1]
return None
class PIPELINE_TYPE(Enum):
TXT2IMG = auto()
IMG2IMG = auto()
INPAINT = auto()
CONTROLNET = auto()
XL_BASE = auto()
XL_REFINER = auto()
def is_txt2img(self):
return self == self.TXT2IMG
def is_img2img(self):
return self == self.IMG2IMG
def is_inpaint(self):
return self == self.INPAINT
def is_controlnet(self):
return self == self.CONTROLNET
def is_sd_xl_base(self):
return self == self.XL_BASE
def is_sd_xl_refiner(self):
return self == self.XL_REFINER
def is_sd_xl(self):
return self.is_sd_xl_base() or self.is_sd_xl_refiner()
class Engine():
def __init__(
self,
engine_path,
):
self.engine_path = engine_path
self.engine = None
self.context = None
self.buffers = OrderedDict()
self.tensors = OrderedDict()
self.cuda_graph_instance = None # cuda graph
def __del__(self):
del self.engine
del self.context
del self.buffers
del self.tensors
def refit(self, refit_weights, is_fp16):
# Initialize refitter
refitter = trt.Refitter(self.engine, TRT_LOGGER)
refitted_weights = set()
# iterate through all tensorrt refittable weights
for trt_weight_name in refitter.get_all_weights():
if trt_weight_name not in refit_weights:
continue
# get weight from state dict
trt_datatype = trt.DataType.FLOAT
if is_fp16:
refit_weights[trt_weight_name] = refit_weights[trt_weight_name].half()
trt_datatype = trt.DataType.HALF
# trt.Weight and trt.TensorLocation
trt_wt_tensor = trt.Weights(trt_datatype, refit_weights[trt_weight_name].data_ptr(), torch.numel(refit_weights[trt_weight_name]))
trt_wt_location = trt.TensorLocation.DEVICE if refit_weights[trt_weight_name].is_cuda else trt.TensorLocation.HOST
# apply refit
refitter.set_named_weights(trt_weight_name, trt_wt_tensor, trt_wt_location)
refitted_weights.add(trt_weight_name)
assert set(refitted_weights) == set(refit_weights.keys())
if not refitter.refit_cuda_engine():
print("Error: failed to refit new weights.")
exit(0)
print(f"[I] Total refitted weights {len(refitted_weights)}.")
def build(self,
onnx_path,
fp16=True,
tf32=False,
int8=False,
input_profile=None,
enable_refit=False,
enable_all_tactics=False,
timing_cache=None,
update_output_names=None,
**extra_build_args
):
print(f"Building TensorRT engine for {onnx_path}: {self.engine_path}")
p = Profile()
if input_profile:
for name, dims in input_profile.items():
assert len(dims) == 3
p.add(name, min=dims[0], opt=dims[1], max=dims[2])
if not enable_all_tactics:
extra_build_args['tactic_sources'] = []
network = network_from_onnx_path(onnx_path, flags=[trt.OnnxParserFlag.NATIVE_INSTANCENORM])
if update_output_names:
print(f"Updating network outputs to {update_output_names}")
network = ModifyNetworkOutputs(network, update_output_names)
engine = engine_from_network(
network,
config=CreateConfig(fp16=fp16,
tf32=tf32,
int8=int8,
refittable=enable_refit,
profiles=[p],
load_timing_cache=timing_cache,
**extra_build_args
),
save_timing_cache=timing_cache
)
save_engine(engine, path=self.engine_path)
def load(self):
print(f"Loading TensorRT engine: {self.engine_path}")
self.engine = engine_from_bytes(bytes_from_path(self.engine_path))
def activate(self, reuse_device_memory=None):
if reuse_device_memory:
self.context = self.engine.create_execution_context_without_device_memory()
self.context.device_memory = reuse_device_memory
else:
self.context = self.engine.create_execution_context()
def allocate_buffers(self, shape_dict=None, device='cuda'):
for idx in range(self.engine.num_io_tensors):
binding = self.engine[idx]
if shape_dict and binding in shape_dict:
shape = shape_dict[binding]
else:
shape = self.engine.get_binding_shape(binding)
dtype = trt.nptype(self.engine.get_binding_dtype(binding))
if self.engine.binding_is_input(binding):
self.context.set_binding_shape(idx, shape)
tensor = torch.empty(tuple(shape), dtype=numpy_to_torch_dtype_dict[dtype]).to(device=device)
self.tensors[binding] = tensor
def infer(self, feed_dict, stream, use_cuda_graph=False):
for name, buf in feed_dict.items():
self.tensors[name].copy_(buf)
for name, tensor in self.tensors.items():
self.context.set_tensor_address(name, tensor.data_ptr())
if use_cuda_graph:
if self.cuda_graph_instance is not None:
CUASSERT(cudart.cudaGraphLaunch(self.cuda_graph_instance, stream))
CUASSERT(cudart.cudaStreamSynchronize(stream))
else:
# do inference before CUDA graph capture
noerror = self.context.execute_async_v3(stream)
if not noerror:
raise ValueError(f"ERROR: inference failed.")
# capture cuda graph
CUASSERT(cudart.cudaStreamBeginCapture(stream, cudart.cudaStreamCaptureMode.cudaStreamCaptureModeGlobal))
self.context.execute_async_v3(stream)
self.graph = CUASSERT(cudart.cudaStreamEndCapture(stream))
self.cuda_graph_instance = CUASSERT(cudart.cudaGraphInstantiate(self.graph, 0))
else:
noerror = self.context.execute_async_v3(stream)
if not noerror:
raise ValueError(f"ERROR: inference failed.")
return self.tensors
def save_image(images, image_path_dir, image_name_prefix):
"""
Save the generated images to png files.
"""
images = ((images + 1) * 255 / 2).clamp(0, 255).detach().permute(0, 2, 3, 1).round().type(torch.uint8).cpu().numpy()
for i in range(images.shape[0]):
image_path = os.path.join(image_path_dir, image_name_prefix+str(i+1)+'-'+str(random.randint(1000,9999))+'.png')
print(f"Saving image {i+1} / {images.shape[0]} to: {image_path}")
Image.fromarray(images[i]).save(image_path)
def preprocess_image(image):
"""
image: torch.Tensor
"""
w, h = image.size
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
image = image.resize((w, h))
image = np.array(image).astype(np.float32) / 255.0
image = image[None].transpose(0, 3, 1, 2)
image = torch.from_numpy(image).contiguous()
return 2.0 * image - 1.0
def prepare_mask_and_masked_image(image, mask):
"""
image: PIL.Image.Image
mask: PIL.Image.Image
"""
if isinstance(image, Image.Image):
image = np.array(image.convert("RGB"))
image = image[None].transpose(0, 3, 1, 2)
image = torch.from_numpy(image).to(dtype=torch.float32).contiguous() / 127.5 - 1.0
if isinstance(mask, Image.Image):
mask = np.array(mask.convert("L"))
mask = mask.astype(np.float32) / 255.0
mask = mask[None, None]
mask[mask < 0.5] = 0
mask[mask >= 0.5] = 1
mask = torch.from_numpy(mask).to(dtype=torch.float32).contiguous()
masked_image = image * (mask < 0.5)
return mask, masked_image
def download_image(url):
response = requests.get(url)
return Image.open(BytesIO(response.content)).convert("RGB")
def get_refit_weights(state_dict, onnx_opt_path, weight_name_mapping, weight_shape_mapping):
onnx_opt_dir = os.path.dirname(onnx_opt_path)
onnx_opt_model = onnx.load(onnx_opt_path)
# Create initializer data hashes
initializer_hash_mapping = {}
for initializer in onnx_opt_model.graph.initializer:
initializer_data = numpy_helper.to_array(initializer, base_dir=onnx_opt_dir).astype(np.float16)
initializer_hash = hash(initializer_data.data.tobytes())
initializer_hash_mapping[initializer.name] = initializer_hash
refit_weights = OrderedDict()
for wt_name, wt in state_dict.items():
# query initializer to compare
initializer_name = weight_name_mapping[wt_name]
initializer_hash = initializer_hash_mapping[initializer_name]
# get shape transform info
initializer_shape, is_transpose = weight_shape_mapping[wt_name]
if is_transpose:
wt = torch.transpose(wt, 0, 1)
else:
wt = torch.reshape(wt, initializer_shape)
# include weight if hashes differ
wt_hash = hash(wt.cpu().detach().numpy().astype(np.float16).data.tobytes())
if initializer_hash != wt_hash:
refit_weights[initializer_name] = wt.contiguous()
return refit_weights
def load_calib_prompts(batch_size, calib_data_path):
with open(calib_data_path, "r") as file:
lst = [line.rstrip("\n") for line in file]
return [lst[i : i + batch_size] for i in range(0, len(lst), batch_size)]
def filter_func(name):
pattern = re.compile(
r".*(time_emb_proj|time_embedding|conv_in|conv_out|conv_shortcut|add_embedding).*"
)
return pattern.match(name) is not None
def quantize_lvl(unet, quant_level=2.5):
"""
We should disable the unwanted quantizer when exporting the onnx
Because in the current ammo setting, it will load the quantizer amax for all the layers even
if we didn't add that unwanted layer into the config during the calibration
"""
for name, module in unet.named_modules():
if isinstance(module, torch.nn.Conv2d):
module.input_quantizer.enable()
module.weight_quantizer.enable()
elif isinstance(module, torch.nn.Linear):
if (
(quant_level >= 2 and "ff.net" in name)
or (quant_level >= 2.5 and ("to_q" in name or "to_k" in name or "to_v" in name))
or quant_level == 3
):
module.input_quantizer.enable()
module.weight_quantizer.enable()
else:
module.input_quantizer.disable()
module.weight_quantizer.disable()
def get_smoothquant_config(model, quant_level=3):
quant_config = {
"quant_cfg": {},
"algorithm": "smoothquant",
}
for name, module in model.named_modules():
w_name = f"{name}*weight_quantizer"
i_name = f"{name}*input_quantizer"
if (
w_name in quant_config["quant_cfg"].keys() # type: ignore
or i_name in quant_config["quant_cfg"].keys() # type: ignore
):
continue
if filter_func(name):
continue
if isinstance(module, torch.nn.Linear):
if (
(quant_level >= 2 and "ff.net" in name)
or (quant_level >= 2.5 and ("to_q" in name or "to_k" in name or "to_v" in name))
or quant_level == 3
):
quant_config["quant_cfg"][w_name] = {"num_bits": 8, "axis": 0} # type: ignore
quant_config["quant_cfg"][i_name] = {"num_bits": 8, "axis": -1} # type: ignore
elif isinstance(module, torch.nn.Conv2d):
quant_config["quant_cfg"][w_name] = {"num_bits": 8, "axis": 0} # type: ignore
quant_config["quant_cfg"][i_name] = {"num_bits": 8, "axis": None} # type: ignore
return quant_config
class PercentileAmaxes:
def __init__(self, total_step, percentile) -> None:
self.data = {}
self.total_step = total_step
self.percentile = percentile
self.i = 0
def append(self, item):
_cur_step = self.i % self.total_step
if _cur_step not in self.data.keys():
self.data[_cur_step] = item
else:
self.data[_cur_step] = np.maximum(self.data[_cur_step], item)
self.i += 1
def add_arguments(parser):
# Stable Diffusion configuration
parser.add_argument('--version', type=str, default="1.5", choices=["1.4", "1.5", "dreamshaper-7", "2.0-base", "2.0", "2.1-base", "2.1", "xl-1.0", "xl-turbo"], help="Version of Stable Diffusion")
parser.add_argument('prompt', nargs = '*', help="Text prompt(s) to guide image generation")
parser.add_argument('--negative-prompt', nargs = '*', default=[''], help="The negative prompt(s) to guide the image generation.")
parser.add_argument('--batch-size', type=int, default=1, choices=[1, 2, 4], help="Batch size (repeat prompt)")
parser.add_argument('--batch-count', type=int, default=1, help="Number of images to generate in sequence, one at a time.")
parser.add_argument('--height', type=int, default=512, help="Height of image to generate (must be multiple of 8)")
parser.add_argument('--width', type=int, default=512, help="Height of image to generate (must be multiple of 8)")
parser.add_argument('--denoising-steps', type=int, default=30, help="Number of denoising steps")
parser.add_argument('--scheduler', type=str, default=None, choices=["DDIM", "DDPM", "EulerA", "Euler", "LCM", "LMSD", "PNDM", "UniPC"], help="Scheduler for diffusion process")
parser.add_argument('--guidance-scale', type=float, default=7.5, help="Value of classifier-free guidance scale (must be greater than 1)")
parser.add_argument('--lora-scale', type=float, nargs='+', default=None, help="Scale of LoRA weights, default 1 (must between 0 and 1)")
parser.add_argument('--lora-path', type=str, nargs='+', default=None, help="Path to LoRA adaptor. Ex: 'latent-consistency/lcm-lora-sdv1-5'")
# ONNX export
parser.add_argument('--onnx-opset', type=int, default=18, choices=range(7,19), help="Select ONNX opset version to target for exported models")
parser.add_argument('--onnx-dir', default='onnx', help="Output directory for ONNX export")
# Framework model ckpt
parser.add_argument('--framework-model-dir', default='pytorch_model', help="Directory for HF saved models")
# TensorRT engine build
parser.add_argument('--engine-dir', default='engine', help="Output directory for TensorRT engines")
parser.add_argument('--int8', action='store_true', help="Apply int8 quantization.")
parser.add_argument('--quantization-level', type=float, default=3.0, choices=range(1,4), help="int8/fp8 quantization level, 1: CNN, 2: CNN+FFN, 2.5: CNN+FFN+QKV, 3: CNN+FC")
parser.add_argument('--build-static-batch', action='store_true', help="Build TensorRT engines with fixed batch size.")
parser.add_argument('--build-dynamic-shape', action='store_true', help="Build TensorRT engines with dynamic image shapes.")
parser.add_argument('--build-enable-refit', action='store_true', help="Enable Refit option in TensorRT engines during build.")
parser.add_argument('--build-all-tactics', action='store_true', help="Build TensorRT engines using all tactic sources.")
parser.add_argument('--timing-cache', default=None, type=str, help="Path to the precached timing measurements to accelerate build.")
# TensorRT inference
parser.add_argument('--num-warmup-runs', type=int, default=5, help="Number of warmup runs before benchmarking performance")
parser.add_argument('--use-cuda-graph', action='store_true', help="Enable cuda graph")
parser.add_argument('--nvtx-profile', action='store_true', help="Enable NVTX markers for performance profiling")
parser.add_argument('--torch-inference', default='', help="Run inference with PyTorch (using specified compilation mode) instead of TensorRT.")
parser.add_argument('--seed', type=int, default=None, help="Seed for random generator to get consistent results")
parser.add_argument('--output-dir', default='output', help="Output directory for logs and image artifacts")
parser.add_argument('--hf-token', type=str, help="HuggingFace API access token for downloading model checkpoints")
parser.add_argument('-v', '--verbose', action='store_true', help="Show verbose output")
return parser
def process_pipeline_args(args):
if args.height % 8 != 0 or args.width % 8 != 0:
raise ValueError(f"Image height and width have to be divisible by 8 but specified as: {args.image_height} and {args.width}.")
max_batch_size = 4
if args.batch_size > max_batch_size:
raise ValueError(f"Batch size {args.batch_size} is larger than allowed {max_batch_size}.")
if args.use_cuda_graph and (not args.build_static_batch or args.build_dynamic_shape):
raise ValueError(f"Using CUDA graph requires static dimensions. Enable `--build-static-batch` and do not specify `--build-dynamic-shape`")
if args.int8 and not args.version.startswith('xl'):
raise ValueError(f"int8 quantization only supported for SDXL pipeline.")
kwargs_init_pipeline = {
'version': args.version,
'max_batch_size': max_batch_size,
'denoising_steps': args.denoising_steps,
'scheduler': args.scheduler,
'guidance_scale': args.guidance_scale,
'output_dir': args.output_dir,
'hf_token': args.hf_token,
'verbose': args.verbose,
'nvtx_profile': args.nvtx_profile,
'use_cuda_graph': args.use_cuda_graph,
'lora_scale': args.lora_scale,
'lora_path': args.lora_path,
'framework_model_dir': args.framework_model_dir,
'torch_inference': args.torch_inference,
}
kwargs_load_engine = {
'onnx_opset': args.onnx_opset,
'opt_batch_size': args.batch_size,
'opt_image_height': args.height,
'opt_image_width': args.width,
'static_batch': args.build_static_batch,
'static_shape': not args.build_dynamic_shape,
'enable_all_tactics': args.build_all_tactics,
'enable_refit': args.build_enable_refit,
'timing_cache': args.timing_cache,
'int8': args.int8,
'quantization_level': args.quantization_level,
'denoising_steps': args.denoising_steps,
}
args_run_demo = (args.prompt, args.negative_prompt, args.height, args.width, args.batch_size, args.batch_count, args.num_warmup_runs, args.use_cuda_graph)
return kwargs_init_pipeline, kwargs_load_engine, args_run_demo
|