Upload test_infer_sdxl_unet_trt_onnx.py
Browse files
test_infer_sdxl_unet_trt_onnx.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from sdxl_unet2_trt import MyStableDiffusionXLPipeline
|
3 |
+
from PIL import Image
|
4 |
+
|
5 |
+
"""
|
6 |
+
With the current pipeline it just use to compare the Unet Diffusers vs Unet Onnx (calibrate)
|
7 |
+
Cannot get the result image
|
8 |
+
"""
|
9 |
+
|
10 |
+
pipe = MyStableDiffusionXLPipeline.from_pretrained(
|
11 |
+
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float32
|
12 |
+
)
|
13 |
+
# pipe = pipe.to("cuda")
|
14 |
+
|
15 |
+
"""
|
16 |
+
For compare the Unet Diffusers vs Unet Onnx (calibrate)
|
17 |
+
"""
|
18 |
+
prompt = 'Portrait shot of a woman, yellow shirt, photograph'
|
19 |
+
image = pipe(prompt)
|
20 |
+
|
21 |
+
"""
|
22 |
+
Uncommand for get the result image
|
23 |
+
"""
|
24 |
+
# prompt = 'Portrait shot of a woman, yellow shirt, photograph'
|
25 |
+
# image = pipe(prompt).images[0]
|
26 |
+
|
27 |
+
# Save the image
|
28 |
+
# save_path = "/home/tiennv/trang/model_unet_quantize_full_onnx_2/image_sdxl_trt_b4.png"
|
29 |
+
# image.save(save_path)
|